Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1533(1): 156-168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38294967

RESUMO

The relationship between integration and awareness is central to contemporary theories and research on consciousness. Here, we investigated whether and how information integration over time, by incorporating the underlying regularities, contributes to our awareness of the dynamic world. Using binocular rivalry, we demonstrated that structured visual streams, constituted by shape, motion, or idiom sequences containing perceptual- or semantic-level regularities, predominated over their nonstructured but otherwise matched counterparts in the competition for visual awareness. Despite the apparent resemblance, a substantial dissociation of the observed rivalry advantages emerged between perceptual- and semantic-level regularities. These effects stem from nonconscious and conscious temporal integration processes, respectively, with the former but not the latter being vulnerable to perturbations in the spatiotemporal integration window. These findings corroborate the essential role of structure-guided information integration in visual awareness and highlight a multi-level mechanism where temporal integration by perceptually and semantically defined regularities fosters the emergence of continuous conscious experience.


Assuntos
Visão Binocular , Percepção Visual , Humanos , Estado de Consciência , Conscientização , Semântica , Estimulação Luminosa
2.
Neuroimage ; 268: 119893, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693597

RESUMO

Biological motion (BM) perception is of great survival value to human beings. The critical characteristics of BM information lie in kinematic cues containing rhythmic structures. However, how rhythmic kinematic structures of BM are dynamically represented in the brain and contribute to visual BM processing remains largely unknown. Here, we probed this issue in three experiments using electroencephalogram (EEG). We found that neural oscillations of observers entrained to the hierarchical kinematic structures of the BM sequences (i.e., step-cycle and gait-cycle for point-light walkers). Notably, only the cortical tracking of the higher-level rhythmic structure (i.e., gait-cycle) exhibited a BM processing specificity, manifested by enhanced neural responses to upright over inverted BM stimuli. This effect could be extended to different motion types and tasks, with its strength positively correlated with the perceptual sensitivity to BM stimuli at the right temporal brain region dedicated to visual BM processing. Modeling results further suggest that the neural encoding of spatiotemporally integrative kinematic cues, in particular the opponent motions of bilateral limbs, drives the selective cortical tracking of BM information. These findings underscore the existence of a cortical mechanism that encodes periodic kinematic features of body movements, which underlies the dynamic construction of visual BM perception.


Assuntos
Percepção de Movimento , Humanos , Fenômenos Biomecânicos , Percepção de Movimento/fisiologia , Percepção Visual/fisiologia , Eletroencefalografia , Encéfalo/fisiologia , Estimulação Luminosa/métodos
3.
Elife ; 102021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34086558

RESUMO

Temporal regularity is ubiquitous and essential to guiding attention and coordinating behavior within a dynamic environment. Previous researchers have modeled attention as an internal rhythm that may entrain to first-order regularity from rhythmic events to prioritize information selection at specific time points. Using the attentional blink paradigm, here we show that higher-order regularity based on rhythmic organization of contextual features (pitch, color, or motion) may serve as a temporal frame to recompose the dynamic profile of visual temporal attention. Critically, such attentional reframing effect is well predicted by cortical entrainment to the higher-order contextual structure at the delta band as well as its coupling with the stimulus-driven alpha power. These results suggest that the human brain involuntarily exploits multiscale regularities in rhythmic contexts to recompose dynamic attending in visual perception, and highlight neural entrainment as a central mechanism for optimizing our conscious experience of the world in the time dimension.


Assuntos
Ritmo alfa , Córtex Cerebral/fisiologia , Sincronização Cortical , Ritmo Delta , Percepção Visual , Estimulação Acústica , Adolescente , Adulto , Atenção , Percepção Auditiva , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Fatores de Tempo , Adulto Jovem
4.
Chemosphere ; 273: 128578, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33066970

RESUMO

In this study, we conducted proof-of-concept research towards the simultaneous treatment of livestock wastewater and the generation of high-quality biodiesel, through microalgae technology. Both original (OPE) and anaerobically-digested (DPE) piggery effluents were investigated for the culture of the microalgae, Desmodesmus sp. EJ8-10. After 14 days' cultivation, the dry biomass from microalgae cultivated in OPE increased from an initial value of 0.01 g/L to 0.33-0.39 g/L, while those growing in DPE only achieved a final dried mass of 0.15-0.35 g/L, under similar initial ammonium nitrogen (NH4+-N) concentrations. The significantly higher microalgal biomass production achieved in the OPE medium may have been supported by the abundance of both macronutrient, such as phosphorus (P), and of micronutrients, such as trace elements, present in the OPE, which may not been present in similar quantities in the DPE. However, a higher lipid content was observed (19.4-28%) in microalgal cells from DPE cultures than those (18.7-22.3%) from OPE cultures. Moreover, the fatty acid compositions in the microalgae cultured in DPE contained high levels of monounsaturated fatty acids (MUFAs) and total C16-C18 acids, which would afford a superior potential for high-quality biodiesel production. The N/P ratio (15.4:1) in OPE was much closer to that indicated by previous studies to be the most suitable (16:1) for microalgae growth, when compared with that determined from the DPE culture medium. This may facilitate protein synthesis in the algal cells and induce a lower accumulation of lipids. Based on these findings, we proposed a new flowsheet for sustainable livestock waste management.


Assuntos
Microalgas , Animais , Biocombustíveis , Biomassa , Gado , Nitrogênio , Águas Residuárias
5.
Sheng Li Xue Bao ; 71(1): 105-116, 2019 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-30778509

RESUMO

To extract the temporal structure of sensory inputs is of great significance to our adaptive functioning in the dynamic environment. Here we characterize three types of temporal structure information, and review behavioral and neural evidence bearing on the encoding and utilization of such information in visual and auditory perception. The evidence together supports a functional view that the brain not only tracks but also makes use of temporal structure from diverse sources for a broad range of cognitive processes, such as perception, attention, and unconscious information processing. These functions are implemented by brain mechanisms including neural entrainment, predictive coding, as well as more specific mechanisms that vary with the type of temporal regularity and sensory modality. This framework enriches our understanding of how the human brain promotes dynamic information processing by exploiting regularities in ubiquitous temporal structures.


Assuntos
Percepção Auditiva , Encéfalo/fisiologia , Percepção do Tempo , Percepção Visual , Atenção , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA