Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38958784

RESUMO

BACKGROUND: Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are recognized as a highly challenging subset of cells, renowned for their heightened propensity for relapse and unfavorable prognosis. Monensin, an ionophoric antibiotic, has been reported to exhibit significant therapeutic efficacy against various cancers, especially CSCs. Erlotinib is classified as one of the EGFR-TKIs and has been previously identified as a promising therapeutic target for TNBC. Our research aims to assess the effectiveness of combination of monensin and erlotinib as a potential treatment strategy for TNBC. METHODS: The combination of monensin and erlotinib was assessed for its potential anticancer activity through various in vitro assays, including cytotoxicity assay, colony formation assay, wound healing assay, transwell assay, mammosphere formation assay, and proportion of CSCs assay. Additionally, an in vivo study using tumor-bearing nude mice was conducted to evaluate the inhibitory effect of the monensin and erlotinib combination on tumor growth. RESULTS: The results indicated that combination of monensin with erlotinib synergistically inhibited cell proliferation, the migration rate, the invasion ability and decreased the CSCs proportion, and CSC markers SOX2 and CD133 in vivo and in vitro. Furthermore, the primary proteins involved in the signaling pathways of the EGFR/ERK and PI3K/AKT are simultaneously inhibited by the combination treatment of monensin and erlotinib in vivo and in vitro. CONCLUSIONS: The simultaneous inhibition of the EGFR/ERK and PI3K/AKT/mTOR signaling pathways by the combination of monensin and erlotinib exhibited a synergistic effect on suppressing tumor proliferation and cancer cell stemness in TNBC.

2.
Biomater Sci ; 11(5): 1725-1738, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36648120

RESUMO

Coccidiosis is a worldwide epidemic intestinal disease with high incidence, which causes huge economic losses. Halofuginone hydrobromide (HF) is widely applied as an effective anticoccidial drug in the poultry industry. However, its therapeutic efficacy is severely restrained due to toxic effects, poor aqueous solubility and low permeability. Nanotechnology can improve the biological effect of drugs, and thus, reduce administered doses and toxic effects. The objective of this study was to investigate the therapeutic and preventive potential of novel HF-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) polymer micelles (HTPM) for preventing coccidiosis in chickens. The HTPM were approximately spherical with a hydrodynamic diameter of 12.65 ± 0.089 nm, a zeta potential of 8.03 ± 0.242 mV, a drug loading of 14.04 ± 0.12%, and an encapsulation efficiency of 71.1 ± 4.15%. HF was encapsulated in the polymer micelles through interactions with TPGS, as characterized by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Cellular take up assays showed that TPGS polymer micelles could enhance drug internalization to alleviate intestinal apoptosis induced by coccidiosis and promote the necrosis of second-generation merozoites of E. tenella. Notably, clinical trials proved that 1.5 mg L-1 HTPM had a stronger anticoccidial effect on E. tenella than that of 3 mg kg-1 HF premix. Amplicon sequencing identified that HTPM could alleviate coccidiosis by restoring the structure of the gut microbiome. These findings indicated that the anticoccidial efficacy of HF was significantly enhanced after being encapsulated in polymer micelles, and further demonstrated the potential protective application of nano-encapsulating anticoccidial drugs as a promising approach to control coccidiosis in poultry. In summary, HTPM hold huge potential as an effective therapeutic agent for coccidiosis.


Assuntos
Coccidiose , Coccidiostáticos , Eimeria tenella , Doenças das Aves Domésticas , Animais , Coccidiostáticos/farmacologia , Coccidiostáticos/uso terapêutico , Galinhas , Micelas , Espectroscopia de Infravermelho com Transformada de Fourier , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Coccidiose/epidemiologia , Polímeros/farmacologia
3.
Front Pharmacol ; 13: 1051694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532753

RESUMO

Chloroquine was once thought to be a promising treatment for COVID-19 but it quickly failed due to its inefficiency and association with increased mortality. Further, comorbidities such as hypertension may have contributed this failure. The safety and toxicity of chloroquine at doses required for treating SARS-CoV-2 infection in hypertensive patients remain unknown. Herein, to investigate these effects, we performed a safety evaluation of chloroquine at the approved dose (63 mg/kg) and at a high dose (126 mg/kg) in hypertensive rats. We found that chloroquine increased the mortality of hypertensive rats to 18.2% and 100%, respectively, after 7 days. During the chloroquine exposure period, the bodyweight, feed, and water consumption of hypertensive rats were decreased significantly. In addition, we show that chloroquine induces prolongation of QTc interval, elevation of LDH and CK, and histopathological damage of the myocardium in hypertensive rats. Ocular toxicity was observed in hypertensive rats in the form of hemorrhage in the eyes and retinal damage. Furthermore, we also observed intestinal toxicity in hypertensive rats, which presented as thinning intestinal walls with hemorrhagic contents, and histopathological changes of the jejunum. Hepatotoxicity was also evidenced by elevated ALT, and vacuolization of hepatocytes was also observed. Nephrotoxicity was observed only in high dose chloroquine-treated hypertensive rats, presenting as alterations of urinalysis and renal function. Immune alterations were also found in high-dose chloroquine-treated hypertensive rats with elevation of serum IL-10, IL-1ß and GRO, and moderate damage to the spleen. In summary, this study partially explains the reason for the failure of chloroquine as a COVID-19 therapy, and underlines the importance of safety evaluation and medical supervision of chloroquine to avoid patient harm, especially to those with hypertension.

4.
Int J Pharm ; 625: 122091, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35964826

RESUMO

Triple-negative breast cancer (TNBC) is featured by aggression and metastasis and remains an unmet medical challenge due to high death rate. We aimed to repurpose maduramicin (MAD) as an effective drug against TNBC, and develop a nanoemulsion system to enhance anticancer efficacy of MAD. MDA-MB-231 and 4 T1 cells were used as in vitro model, and cell viability was determined by performing cell counting kit-8 and a colony-formation assay. Furthermore, MAD loaded nanoemulsion (MAD-NEs) was manufactured and characterized by a series of tests. The anticancer and anti-metastasis mechanism of MAD-NEs were assessed by performing cell cycle, apoptosis, wound-healing, transwell assay and Western blotting assays. Herein, MAD was firstly demonstrated to be an effective agent to suppress growth of TNBC cells. Subsequently, the optimized MAD-NEs were shown to have stability and high encapsulation efficiency, and could arrested cells in G0/G1 phase and induced apoptosis in TNBC cells. More importantly, MAD-NEs significantly impeded the metastasis of tumor cells, which was further demonstrated by the significant altered expression of epithelial-mesenchymal transition and extracellular matrix markers in vitro and in vivo. Moreover, compared to MAD, MAD-NEs exhibited higher efficacy in shrinking breast tumor size and repressing liver and lung metastasis in vivo, and showed excellent biocompatibility in tumor-bearing mice. The successfully prepared MAD-NEs are expected to be harnessed to suppress tumor growth, invasion and metastasis in the battle against malignant TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Reposicionamento de Medicamentos , Humanos , Lactonas , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
5.
Int J Nanomedicine ; 17: 2475-2491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668999

RESUMO

Background: Halofuginone (HF)-loaded TPGS polymeric micelles (HTPM) were successfully fabricated using the thin-film hydration technique. HTPM via intravenous injection have been demonstrated to exert an excellent anticancer effect against triple-negative breast cancer (TNBC) cells and subcutaneous xenografts. In the present study, we further explored the potential treatment effect and mechanism of orally administered HTPM alone and in combination with surgical therapy on TNBC in subcutaneous and orthotopic mouse models. Methods: Herein, the stability and in vitro release behavior of HTPM were first evaluated in the simulated gastrointestinal fluids. Caco-2 cell monolayers were then used to investigate the absorption and transport patterns of HF with/without encapsulation in TPGS polymeric micelles. Subsequently, the therapeutic effect of orally administered HTPM was checked on subcutaneous xenografts of TNBC in nude mice. Ultimately, orally administered HTPM, combined with surgical therapy, were utilized to treat orthotopic TNBC in nude mice. Results: Our data confirmed that HTPM exhibited good stability and sustained release in the simulated gastrointestinal fluids. HF was authenticated to be a substrate of P-glycoprotein (P-gp), and its permeability across Caco-2 cell monolayers was markedly enhanced via heightening intracellular absorption and inhibiting P-gp efflux due to encapsulation in TPGS polymeric micelles. Compared with HF alone, HTPM showed stronger tumor-suppressing effects in subcutaneous xenografts of MDA-MB-231 cells when orally administered. Moreover, compared with HTPM or surgical therapy alone, peroral HTPM combined with partial surgical excision synergistically retarded the growth of orthotopic TNBC. Fundamentally, HTPM orally administered at the therapeutic dose did not cause any pathological injury, while HF alone led to weight loss and jejunal bleeding in the investigated mice. Conclusion: Taken together, HTPM could be applied as a potential anticancer agent for TNBC by oral administration.


Assuntos
Micelas , Neoplasias de Mama Triplo Negativas , Animais , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Piperidinas , Polímeros , Quinazolinonas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Vitamina E
6.
Int J Nanomedicine ; 16: 1587-1600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664573

RESUMO

BACKGROUND: Halofuginone hydrobromide (HF) is a synthetic analogue of the naturally occurring quinazolinone alkaloid febrifugine, which has potential therapeutic effects against breast cancer, however, its poor water solubility greatly limits its pharmaceutical application. D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) is a water-soluble derivative of vitamin E, which can self-assemble to form polymeric micelles (PMs) for encapsulating insoluble anti-tumor drugs, thereby effectively enhancing their anti-cancer effects. METHODS: HF-loaded TPGS PMs (HTPMs) were manufactured using a thin-film hydration technique, followed by a series of characterizations, including the hydrodynamic diameter (HD), zeta potential (ZP), stability, drug loading (DL), encapsulation efficiency (EE), and in vitro drug release. The anti-cancer effects and potential mechanism of HTPMs were investigated in the breast cell lines MDA-MB-231 and MCF-7, and normal breast epithelial cell line Eph-ev. The breast cancer-bearing BALB/c nude mouse model was successfully established by subcutaneous injection of MDA-MB-231 cells and used to evaluate the in vivo therapeutic effect and safety of the HTPMs. RESULTS: The optimized HTPMs had an HD of 17.8±0.5 nm and ZP of 14.40±0.1 mV. These PMs exhibited DL of 12.94 ± 0.46% and EE of 90.6 ± 0.85%, along with excellent storage stability, dilution tolerance and sustained drug release in pH-dependent manner within 24 h compared to free HF. Additionally, the HTPMs had stronger inhibitory effects than free HF and paclitaxel against MDA-MB-231 triple-negative breast cancer cells, and little toxicity in normal breast epithelial Eph-ev cells. The HTPMs induced cell cycle arrest and apoptosis of MDA-MB-231 by disrupting the mitochondrial membrane potential and enhancing reactive oxygen species formation. Evaluation of in vivo anti-tumor efficacy demonstrated that HTPMs exerted a stronger tumor inhibition rate (68.17%) than free HF, and exhibited excellent biocompatibility. CONCLUSION: The findings from this study indicate that HTPMs holds great clinical potential for treating triple-negative breast cancer.


Assuntos
Composição de Medicamentos , Micelas , Piperidinas/uso terapêutico , Polímeros/química , Quinazolinonas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Vitamina E/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Paclitaxel/uso terapêutico , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/ultraestrutura
7.
Sensors (Basel) ; 20(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823502

RESUMO

The CNT-PDMS composite has been widely adopted in flexible devices due to its high elasticity, piezoresistivity, and biocompatibility. In a wide range of applications, CNT-PDMS composite sensors were used for resistive strain measurement. Accordingly, the percolation threshold 2%~4% of the CNT weight ratio in the CNT-PDMS composite was commonly selected, which is expected to achieve the optimized piezoresistive sensitivity. However, the linear range around the percolation threshold weight ratio (2%~4%) limits its application in a stable output of large strain (>20%). Therefore, comprehensive understanding of the electromechanical, mechanical, and electrical properties for the CNT-PDMS composite with different CNT weight ratios was expected. In this paper, a systematic study was conducted on the piezoresistivity, Young's modulus, conductivity, impedance, and the cross-section morphology of different CNT weight ratios (1 to 10 wt%) of the CNT-PDMS composite material. It was experimentally observed that the piezo-resistive sensitivity of CNT-PDMS negatively correlated with the increase in the CNT weight ratio. However, the electrical conductivity, Young's modulus, tensile strength, and the linear range of piezoresistive response of the CNT-PDMS composite positively correlated with the increase in CNT weight ratio. Furthermore, the mechanism of these phenomena was analyzed through the cross-section morphology of the CNT-PDMS composite material by using SEM imaging. From this analysis, a guideline was proposed for large strain (40%) measurement applications (e.g., motion monitoring of the human body of the finger, arm, foot, etc.), the CNT weight ratio 8 wt% was suggested to achieve the best piezoresistive sensitivity in the linear range.


Assuntos
Monitorização Fisiológica , Nanotubos de Carbono , Módulo de Elasticidade , Elasticidade , Condutividade Elétrica , Humanos , Resistência à Tração
8.
Ying Yong Sheng Tai Xue Bao ; 15(7): 1253-6, 2004 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-15506109

RESUMO

In a laboratory experiment, Moina mongolica and Brachionus plicatilis were polycultured at four relatively inoculating densities, i.e., 0.06/0.30, 0.10/0.30, 0.30/0.30 and 0.60/0.30 (ind x ml(-1)/ind x ml(-1)), while M. mongolica monocultured at 0.06, 0.10, 0.30 and 0.60 ind x ml(-1) and B. plicatilis at 0.30 ind x ml(-1) were used as the control. Interspecific interference did exist between M. mongolica and B. plicatilis when these two species coexisted in a microcosm. In the polycultured microcosms, depressed population density of M. mongolica resulted from the coexistence of B. plicatilis, and M. mongolica maintained at extremely low density. In opposite, M. mongolica had negligibly negative influence on the population of B. plicatilis. Further experiment showed that the mortality of M. mongolica deprived of food for 120 h was 100%, while 90% of B. plicatilis survived after 144 h of food deprivation. The relatively strong capacity of B. plicatilis in tolerating starvation may be one of the important reasons for it wins the competition against M. mongolica.


Assuntos
Cladocera/fisiologia , Comportamento Competitivo , Ecossistema , Rotíferos/fisiologia , Animais , China , Cladocera/crescimento & desenvolvimento , Comportamento Alimentar , Privação de Alimentos , Água Doce , Densidade Demográfica , Crescimento Demográfico , Rotíferos/crescimento & desenvolvimento , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...