Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270089

RESUMO

It has been reported that the mitochondrial carrier family proteins of AtMTM1 and AtMTM2 are necessary for manganese superoxide dismutase (MnSOD) activation in Arabidopsis, and are responsive to methyl viologen (MV)-induced oxidative stress. In this study, we showed that MnSOD activity was enhanced specifically by Mn treatments. By using AtMnSOD-overexpressing and AtMnSOD-knockdown mutant plants treated with the widely used oxidative stressors including MV, NaCl, H2O2, and tert-butyl hydroperoxide (t-BH), we revealed that Arabidopsis MnSOD was crucial for root-growth control and superoxide scavenging ability. In addition, it has been reported that E. coli MnSOD activity is inhibited by Fe and that MTM1-mutated yeast cells exhibit elevated Fe content and decreased MnSOD activity, which can be restored by the Fe2+-specific chelator, bathophenanthroline disulfonate (BPS). However, we showed that BPS inhibited MnSOD activity in AtMTM1 and AtMTM2 single- and double-mutant protoplasts, implying that altered Fe homeostasis affected MnSOD activation through AtMTM1 and AtMTM2. Notably, we used inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis to reveal an abnormal Fe/Mn ratio in the roots and shoots of AtMTM1 and AtMTM2 mutants under MV stress, indicating the importance of AtMTM1 in roots and AtMTM2 in shoots for maintaining Fe/Mn balance.

2.
Front Plant Sci ; 12: 690064, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434202

RESUMO

The manganese (Mn) tracking factor for mitochondrial Mn superoxide dismutase (MnSOD) has been annotated as yMTM1 in yeast, which belongs to the mitochondrial carrier family. We confirmed that Arabidopsis AtMTM1 and AtMTM2 are functional homologs of yMTM1 as they can revive yeast MnSOD activity in yMTM1-mutant cells. Transient expression of AtMnSOD-3xFLAG in the AtMTM1 and AtMTM2-double mutant protoplasts confirmed that AtMTM1 and AtMTM2 are required for AtMnSOD activation. Our study revealed that AtMnSOD interacts with AtMTM1 and AtMTM2 in the mitochondria. The expression levels of AtMTM1, AtMTM2, and AtMnSOD respond positively to methyl viologen (MV) and metal stress. AtMTM1 and AtMTM2 are involved in Mn and Fe homeostasis, root length, and flowering time. Transient expression of chloroplast-destined AtMnSOD revealed that an evolutionarily conserved activation mechanism, like the chloroplastic-localized MnSOD in some algae, still exists in Arabidopsis chloroplasts. This study strengthens the proposition that AtMTM1 and AtMTM2 participate in the AtMnSOD activation and ion homeostasis.

3.
Mol Phylogenet Evol ; 37(1): 214-34, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16182153

RESUMO

Phylogenetic relationships among the three families and 12 living genera of cycads were reconstructed by distance and parsimony criteria using three markers: the chloroplast matK gene, the chloroplast trnK intron and the nuclear ITS/5.8S rDNA sequence. All datasets indicate that Cycadaceae (including only the genus Cycas) is remotely related to other cycads, in which Dioon was resolved as the basal-most clade, followed by Bowenia and a clade containing the remaining nine genera. Encephalartos and Lepidozamia are closer to each other than to Macrozamia. The African genus Stangeria is embedded within the New World subfamily Zamiodeae. Therefore, Bowenia is an unlikely sister to Stangeria, contrary to the view that they form the Stangeriaceae. The generic status of Dyerocycas and Chigua is unsupportable as they are paraphyletic with Cycas and the Zamia, respectively. Nonsense mutations in the matK gene and indels in the other two datasets lend evidence to reinforce the above conclusions. According to the phylogenies, the past geography of the genera of cycads and the evolution of character states are hypothesized and discussed. Within the suborder Zamiieae, Stangeria, and the tribe Zamieae evolved significantly faster than other genera. The matK gene and ITS/5.8S region contain more useful information than the trnK intron in addressing phylogeny. Redelimitations of Zamiaceae, Stangeriaceae, subfamily Encephalartoideae and subtribe Macrozamiineae are necessary.


Assuntos
Cloroplastos/genética , Cycadopsida/classificação , Cycadopsida/genética , DNA Ribossômico/genética , Filogenia , DNA de Plantas , Evolução Molecular , Geografia , Íntrons/genética , NADH Desidrogenase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...