Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflammopharmacology ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977646

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory disease of the colon. Ginsenoside may be an ideal agent for UC treatment. However, its efficacy and safety are unknown. We aim to conduct a systematic evaluation to assess the effects and potential mechanisms of ginsenosides in animal models of UC. METHODS: Six electronic databases will be searched (PubMed, Embase, Web of Science, China Knowledge Network (CNKI), China Science and Technology Journal Database (CQVIP), and Wanfang Data Knowledge). SYRCLE list will be used to assess the quality of literature, and STATA 15.1 for data analysis. Time-dose effects analysis will be used to reveal the time-dosage response relations between ginsenosides and UC. RESULTS: Ultimately, fifteen studies involving 300 animals were included. Preliminary evidence was shown that ginsenosides could reduce Disease Activity Index (DAI) scores, weight loss, histological colitis score (HCS), spleen weight, Malondialdehyde (MDA), Myeloperoxidase (MPO) activity, interleukin-1ß (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and increase colon length (CL), myeloperoxidase (GSH), interleukin 4 (IL-4), interleukin 10 (IL-10), Zonula Occludens-1 (ZO-1) and occludin. Results of time-dose interval analysis indicated that ginsenosides at a dosage of 5-200 mg/kg with an intervention time of 7-28 days were relatively effective. CONCLUSIONS: Preclinical evidence suggests that ginsenoside is a novel treatment for UC. And the mechanisms of ginsenosides in treating UC may involve anti-inflammatory, antioxidant, barrier protection, intestinal flora regulation, and immune regulation. Although, due to the high heterogeneity, further large-scale and high-quality preclinical studies are needed to examine the protection of ginsenosides against UC.

2.
PLoS One ; 18(9): e0282275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733659

RESUMO

BACKGROUND: Paeoniflorin (PF), the main active glucoside of Paeonia Lactiflora, has many pharmacological activities, such as inhibition of vasodilation, hypoglycemia, and immunomodulation. Although the current evidence has suggested the therapeutic effects of PF on diabetic nephropathy (DN), its potential mechanism of action is still unclear. PURPOSE: A systematic review and meta-analysis of the existing literature on paeoniflorin treatment in DN animal models was performed to evaluate the efficacy and mechanism of PF in DN animal models. METHODS: The risk of bias in each study was judged using the CAMARADES 10-item quality checklist with the number of criteria met varying from 4 / 10 to 7 / 10, with an average of 5.44. From inception to July 2022, We searched eight databases. We used the Cochrane Collaboration's 10-item checklist and RevMan 5.3 software to assess the risk of bias and analyze the data. Three-dimensional dose/time-effect analyses were conducted to examine the dosage/time-response relations between PF and DN. RESULTS: Nine animal studies were systematically reviewed to evaluate the effectiveness of PF in improving animal models of DN. Meta-analysis data and intergroup comparisons indicated that PF slowed the index of mesangial expansion and tubulointerstitial injury, 24-h urinary protein excretion rate, expression of anti-inflammatory mediators (mRNA of MCP-1, TNF-α, iNOS, and IL-1 ß), and expression of immune downstream factors (P-IRAK1, TIRF, P-IRF3, MyD88, and NF-κBp-p65). Furthermore, modeling methods, animal species, treatment duration, thickness of tissue sections during the experiment, and experimental procedures were subjected to subgroup analyses. CONCLUSION: The present study demonstrated that the reno-protective effects of PF were associated with its inhibition on macrophage infiltration, reduction of inflammatory mediators, and immunomodulatory effects. In conclusion, PF can effectively slow down the progression of DN and hold promise as a protective drug for the treatment of DN. Due to the low bioavailability of PF, further studies on renal histology in animals are urgently needed. We therefore recommend an active exploration of the dose and therapeutic time frame of PF in the clinic and in animals. Moreover, it is suggested to actively explore methods to improve the bioavailability of PF to expand the application of PF in the clinic.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Nefropatias Diabéticas/tratamento farmacológico , Rim , Proteínas Adaptadoras de Transdução de Sinal , Instituições de Assistência Ambulatorial
3.
Biol Proced Online ; 25(1): 20, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403034

RESUMO

BACKGROUND: The incidence and mortality of gastric cancer (GC) are high worldwide. Tumor stemness is a major contributor to tumorigenesis and development of GC, in which long non-coding RNAs (lncRNAs) are deeply involved. The purpose of this study was to investigate the influences and mechanisms of LINC00853 in the progression and stemness of GC. METHODS: The level of LINC00853 was assessed based on The Cancer Genome Atlas (TCGA) database and GC cell lines by RT-PCR and in situ hybridization. An evaluation of biological functions of LINC00853 including cell proliferation, migration, and tumor stemness was conducted via gain-and loss-of-function experiments. Furthermore, RNA pull-down and RNA immunoprecipitation (RIP) assay were utilized to validate the connection between LINC00853 and the transcription factor Forkhead Box P3 (FOXP3). Nude mouse xenograft model was used to identify the impacts of LINC00853 on tumor development. RESULTS: We identified the up-regulated levels of lncRNA-LINC00853 in GC, and its overexpression correlates with poor prognosis in GC patients. Further study indicated that LINC00853 promoted cell proliferation, migration and cancer stemness while suppressed cell apoptosis. Mechanistically, LINC00853 directly bind to FOXP3 and promoted FOXP3-mediated transcription of PDZK1 interacting protein 1(PDZK1IP1). Alterations of FOXP3 or PDZK1IP1 reversed the LINC00853-induced biological effects on cell proliferation, migration and stemness. Moreover, xenograft tumor assay was used to investigate the function of LINC00853 in vivo. CONCLUSIONS: Taken together, these findings revealed the tumor-promoting activity of LINC00853 in GC, expanding our understanding of lncRNAs regulation on GC pathogenesis.

4.
Front Immunol ; 14: 1087677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168865

RESUMO

Inflammatory bowel disease (IBD) is a group of disorders that cause chronic inflammation in the intestines, with the primary types including ulcerative colitis and Crohn's disease. The link between autophagy, a catabolic mechanism in which cells clear protein aggregates and damaged organelles, and intestinal health has been widely studied. Experimental animal studies and human clinical studies have revealed that autophagy is pivotal for intestinal homeostasis maintenance, gut ecology regulation and other aspects. However, few articles have summarized and discussed the pathways by which autophagy improves or exacerbates IBD. Here, we review how autophagy alleviates IBD through the specific genes (e.g., ATG16L1, IRGM, NOD2 and LRRK2), crosstalk of multiple phenotypes with autophagy (e.g., Interaction of autophagy with endoplasmic reticulum stress, intestinal antimicrobial defense and apoptosis) and autophagy-associated signaling pathways. Moreover, we briefly discuss the role of autophagy in colorectal cancer and current status of autophagy-based drug research for IBD. It should be emphasized that autophagy has cell-specific and environment-specific effects on the gut. One of the problems of IBD research is to understand how autophagy plays a role in intestinal tract under specific environmental factors. A better understanding of the mechanism of autophagy in the occurrence and progression of IBD will provide references for the development of therapeutic drugs and disease management for IBD in the future.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Animais , Humanos , Doenças Inflamatórias Intestinais/genética , Doença de Crohn/genética , Inflamação/complicações , Colite Ulcerativa/complicações , Autofagia/genética
5.
Inflammopharmacology ; 30(6): 2035-2050, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36227442

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic, potentially cancerous disease with limited treatment options. Quercetin may be a novel treatment for IBD. However, its efficacy and safety are unknown. Our goal was to conduct a systematic evaluation to summarize the preclinical effects of quercetin, which may help guide future studies. METHODS: The literature was drawn from three English databases (PubMed, Embase, and Web of Science), and the quality of the included literature was assessed using the SYRCLE list (10 items). The meta-analysis was performed using STATA 15.1 software. RESULTS: A total of 11 animal studies with 199 animals were involved. The current meta-analysis showed that quercetin could reduce histological score (HS), Disease Activity Index (DAI), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), nitric oxide(NO), malondialdehyde (MDA), myeloperoxidase (MPO) activity and increase colon length (CL), weight change degree (WCD), interleukin-10 (IL-10), glutathione (GSH), superoxide dismutase (SOD) activity and catalase (CAT) activity, which may involve anti-inflammatory, anti-oxidative stress, cytoprotective, barrier protection, flora regulation. CONCLUSIONS: In conclusion, preclinical evidence suggests that quercetin is an ideal agent for IBD treatment. However, the validity of the findings may be compromised by the low methodological quality and the small number of studies included. There may be some discrepancies between the results of the current analysis and the real situation. More rigorous experimental designs and more comprehensive studies are needed to test the protection of quercetin against IBD.


Assuntos
Doenças Inflamatórias Intestinais , Quercetina , Animais , Antioxidantes/metabolismo , Glutationa/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Malondialdeído , Óxido Nítrico , Estresse Oxidativo , Quercetina/farmacologia , Quercetina/uso terapêutico
6.
Pharmacol Res ; 185: 106481, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195307

RESUMO

Coptis Chinensis Franch is widely used in the treatment of diabetes, and berberine is the primary bioactive component in it. Evidence from previous studies has shown that berberine supplementation is effective for treating diabetic nephropathy (DN) in animal models. In this systematic review and meta-analysis, we evaluated the effects and potential mechanisms of action of berberine in animal models of DN. Relevant studies were searched from the English language databases PubMed, Web of Science, and Embase starting from the establishment of the database till June 2022. Twenty-five studies were included, and the risk of bias tool from SYRCLE was used to assess the methodological quality. Statistical analysis was conducted using STATA 15.1. Fasting blood glucose (FBG), blood urea nitrogen (BUN), serum creatinine (SCR), and the kidney index (KI) were the primary outcomes to be analyzed. The overall results showed that berberine improves the indicators of renal function, such as BUN, SCR, proteinuria, and KI. Meanwhile, berberine also improved inflammatory indicators, such as IL-6 and TNF-α, and oxidative stress indicators, such as the superoxide dismutase activity and malondialdehyde content. Additionally, berberine lowered the levels of known risk factors, including triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL). These beneficial effects of berberine in DN may be related to its anti-fibrotic, anti-inflammatory, and anti-oxidative stress properties. However, to assess the anti-diabetic nephropathy effects and safety of berberine in a more accurate manner, additional large-scale, long-term, and high-quality preclinical trials are needed to confirm these findings before clinical application.


Assuntos
Berberina , Diabetes Mellitus , Nefropatias Diabéticas , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Creatinina , Triglicerídeos , LDL-Colesterol , Diabetes Mellitus/tratamento farmacológico
7.
Pharmacol Res ; 184: 106440, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108874

RESUMO

Gastric carcinoma (GC) is a complex multifactorial disease occurring as sequential events commonly referred to as the Correa's cascade, a stepwise progression from non-active or chronic active gastritis, to gastric precancerous lesions, and finally, adenocarcinoma. Therefore, the identification of novel agents with multi-step actions on the Correa's cascade and those functioning as multiple phenotypic regulators are the future direction for drug discovery. Recently, berberine (BBR) has gained traction owing to its pharmacological properties, including anti-inflammatory, anti-cancer, anti-ulcer, antibacterial, and immunopotentiation activities. In this article, we investigated and summarized the multi-step actions of BBR on Correa's cascade and its underlying regulatory mechanism in gastric carcinogenesis for the first time, along with a discussion on the strength of BBR to prevent and treat GC. BBR was found to suppress H. pylori infection, control mucosal inflammation, and promote ulcer healing. In the gastric precancerous lesion phase, BBR could reverse mucosal atrophy and prevent lesions in intestinal metaplasia and dysplasia by regulating inflammatory cytokines, promoting cell apoptosis, regulating macrophage polarization, and regulating autophagy. Additionally, the therapeutic action of BBR on GC was partly realized through the inhibition of cell proliferation, migration, and angiogenesis; induction of apoptosis and autophagy, and enhancement of chemotherapeutic drug sensitivity. BBR exerted multi-step actions on the Correa's cascade, thereby halting and even reversing gastric carcinogenesis in some cases. Thus, BBR could be used to prevent and treat GC. In conclusion, the therapeutic strategy underlying BBR's multi-step action in the trilogy of Correa's cascade may include "prevention of gastric mucosal inflammation (Phase 1); reversal of gastric precancerous lesions (Phase 2), and rescue of GC (Phase 3)". The NF-κB, PI3K/Akt, and MAPK signaling pathways may be the key signaling transduction pathways underlying the treatment of gastric carcinogenesis using BBR. The advantage of BBR over conventional drugs is its multifaceted and long-term effects. This review is expected to provide preclinical evidence for using BBR to prevent gastric carcinogenesis and treat gastric cancer.


Assuntos
Berberina , Gastrite Atrófica , Gastrite , Infecções por Helicobacter , Lesões Pré-Cancerosas , Neoplasias Gástricas , Antibacterianos/uso terapêutico , Berberina/farmacologia , Berberina/uso terapêutico , Carcinogênese , Citocinas/uso terapêutico , Gastrite Atrófica/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Humanos , Inflamação , NF-kappa B , Fosfatidilinositol 3-Quinases , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/prevenção & controle
8.
Front Pharmacol ; 13: 937029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147325

RESUMO

Berberine (BBR) is the main active constituent of the Rhizoma coptidis (Huanglian) and has multiple biological activities. Although current evidence suggests that the BBR has a multi-target effect in ulcerative colitis (UC), its action and mechanism are unclear. The purpose of this meta-analysis was to assess the pharmacological effects and potential mechanisms of BBR in UC models. Studies were searched from four databases (PubMed, Embase, Web of Science, and Cochrane Library) until March 2022. Standardized mean difference (SMD) and 95% confidence intervals (CI) were used for the adjudication of outcomes. Stata 15.0 software was used for statistical analysis. Twenty-eight publications and 29 studies involving 508 animals were included in the meta-analysis. The results showed that BBR reduced disease activity index (DAI) scores, alleviated UC-induced colon length (CL) loss, prevented weight loss, and reduced histological colitis score (HCS). Mechanistically, BBR was found to reduce myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels, reduce levels of pro-inflammatory factors interleukin-1ß (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ) and mRNA expression of interleukin 17, increase levels of anti-inflammatory factor interleukin 10 (IL-10), and to increase levels of tight junction protein zonula occludens-1 (ZO-1) and occludin, which may involve antioxidant, anti-apoptotic, neuromodulation, anti-fibrotic, anti-inflammatory, barrier protection, and flora regulation aspects. However, additional attention should be paid to these outcomes due to the heterogeneity and methodological quality of the studies.

9.
Front Pharmacol ; 13: 917375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734409

RESUMO

Berberine, the main bioactive component of Coptis chinensis Franch., is widely used in the treatment of diabetes. Previous studies have reported that berberine supplementation may play a multitarget therapeutic role in diabetes-related cognitive impairment (DCI). This systematic review and meta-analysis evaluated the effect and possible mechanisms of berberine in animal models of DCI. Relevant studies were searched through PubMed, Web of Science, Embase, and three Chinese databases (CNKI, Wanfang, and VIP) until March 2022. Twenty studies involving 442 animals were included, and SYRCLE's risk of bias tool was used to assess methodological quality. The statistical analysis was performed using STATA 15.0 to calculate the weighted standard mean difference (SMD) with a 95% confidence interval (CI). The fasting blood glucose (FBG) and Morris water maze test (MWM) were the main outcomes to be analyzed. The overall results showed that berberine could significantly improve FBG, escape latency, the times of crossing the platform, the time spent in the target quadrant, serum insulin, 2hBG of oral glucose tolerance test (OGTT), amyloid ß (Aß), acetylcholinesterase (AChE), oxidative stress, and inflammation levels. The present meta-analysis demonstrated that berberine could not only lower blood glucose levels but also improve learning and memory in DCI animal models, which might involve regulating glucose and lipid metabolism, improving insulin resistance, anti-oxidation, anti-neuroinflammation, inhibiting endoplasmic reticulum (ER) stress; and improving the cholinergic system. However, additional attention should be paid to these outcomes due to the significant heterogeneity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...