Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm Res ; 43(8): 788-797, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32779151

RESUMO

LXRα agonists have attracted significant attention due to their potential biological activities on promoting cholesterol efflux. This study was designed to investigate whether setosphapyrone C and D have potential lipid-lowering capacity and the underlying mechanisms in vitro. Our data showed that setosphapyrone C and D had weak cytotoxicity compared to the liver X receptor α (LXRα) agonist T0901317. In RAW 264.7 macrophages, setosphapyrone C and D significantly enhanced [3H]-cholesterol efflux by ~ 21.3% and 32.4%, respectively; furthermore, setosphapyrone C and D enhanced the protein levels of ATP-binding cassette transporter (ABC) A1 and LXRα by 58% and 69%, and 60% and 70% (8 µM), respectively; however, they had no effect on the protein levels of ABCG1 and scavenger receptor B type 1; additionally, they had minor effect on the mRNA expression of lipogenic genes. Of note, setosphapyrone C and D significantly enhanced LXRα/ABCA1pathway in mice primary macrophages. In BRL cells, setosphapyrone C and D significantly improved the protein levels of ABCA1 and ABCG1; setosphapyrone D significantly enhanced the protein expression of low-density lipoprotein. Collectively, setosphapyrone C and D with weak cytotoxicity exhibited effective lipid-lowering effect via enhancing LXRα/ABC pathways. Setosphapyrones possess potential application for the treatment of hyperlipidemic diseases.


Assuntos
Colesterol/metabolismo , Hipolipemiantes/farmacologia , Receptores X do Fígado/agonistas , Macrófagos/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Hidrocarbonetos Fluorados/farmacologia , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Sulfonamidas/farmacologia
2.
J Cell Mol Med ; 24(6): 3384-3398, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31981312

RESUMO

Recent studies have demonstrated that commercially available lipid-lowering drugs cause various side effects; therefore, searching for anti-hyperlipidaemic compounds with lower toxicity is a research hotspot. This study was designed to investigate whether the marine-derived compound, 5-hydroxy-3-methoxy-5-methyl-4-butylfuran-2(5H)-one, has an anti-hyperlipidaemic activity, and the potential underlying mechanism in vitro. Results showed that the furanone had weaker cytotoxicity compared to positive control drugs. In RAW 264.7 cells, the furanone significantly lowered ox-LDL-induced lipid accumulation (~50%), and its triglyceride (TG)-lowering effect was greater than that of liver X receptor (LXR) agonist T0901317. In addition, it significantly elevated the protein levels of peroxisome proliferator-activated receptors (PPARα) and ATP-binding cassette (ABC) transporters, which could be partially inhibited by LXR antagonists, GSK2033 and SR9243. In HepG2 cells, it significantly decreased oleic acid-induced lipid accumulation, enhanced the protein levels of low-density lipoprotein receptor (LDLR), ABCG5, ABCG8 and PPARα, and reduced the expression of sterol regulatory element-binding protein 2 (~32%). PPARα antagonists, GW6471 and MK886, could significantly inhibit the furanone-induced lipid-lowering effect. Furthermore, the furanone showed a significantly lower activity on the activation of the expression of lipogenic genes compared to T0901317. Taken together, the furanone exhibited a weak cytotoxicity but had powerful TC- and TG-lowering effects most likely through targeting LXRα and PPARα, respectively. These findings indicate that the furanone has a potential application for the treatment of dyslipidaemia.


Assuntos
Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/análise , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Hipolipemiantes/efeitos adversos , Lipoproteínas LDL/análise , Receptores X do Fígado/antagonistas & inibidores , Receptores X do Fígado/metabolismo , Camundongos , PPAR alfa/antagonistas & inibidores , PPAR alfa/metabolismo , Células RAW 264.7 , Triglicerídeos/análise
3.
J Agric Food Chem ; 67(20): 5782-5791, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31055921

RESUMO

Reverse cholesterol transport (RCT) is a physiological process, in which excess peripheral cholesterol is transported to the liver and further excreted into the bile and then feces. Recently, fucoidans are reported to have a lipid-lowering effect. This study was designed to investigate whether fucoidan from the brown seaweed Ascophyllum nodosum lowers lipid by modulating RCT in C57BL/6J mice fed a high-fat diet. Our results indicated that fucoidan intervention significantly reduced plasma triglyceride, total cholesterol, and fat pad index and markedly increased high-density lipoprotein cholesterol in a dose-dependent manner. In the liver, fucoidan significantly increased the expression of peroxisome proliferator-activated receptor (PPAR)α, PPARγ, liver X receptor (LXR)ß, adenosine triphosphate (ATP) binding cassette (ABC)A1, ABCG8, low-density lipoprotein receptor (LDLR), scavenger receptor B type 1 (SR-B1), and cholesterol 7-α-hydroxylase A1 (CYP7A1) and decreased the triglyceride level and expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) and PPARß but had no effect on LXRα, ABCG1, and ABCG5. In the small intestine, the fucoidan treatment significantly reduced the expression of Niemann-Pick C1-like 1 (NPC1L1) and improved ABCG5 and ABCG8. These results demonstrated that fucoidan can improve lipid transfer from plasma to the liver by activating SR-B1 and LDLR and inactivating PCSK9 and upregulate lipid metabolism by activating PPARα, LXRß, ABC transporters, and CYP7A1. In the small intestine, this fucoidan can decrease cholesterol absorption and increase cholesterol excretion by activating NPC1L1 and ABCG5 and ABCG8, respectively. In conclusion, fucoidan from A. nodosum may lower lipids by modulating RCT-related protein expression and can be explored as a potential compound for prevention or treatment of hyperlipidemia-related diseases.


Assuntos
Ascophyllum/química , Colesterol/metabolismo , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Polissacarídeos/administração & dosagem , Alga Marinha/química , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Hiperlipidemias/etiologia , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores Depuradores/genética , Receptores Depuradores/metabolismo
4.
Int J Biol Macromol ; 134: 759-769, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100394

RESUMO

Reverse cholesterol transport (RCT) has been demonstrated to reduce hyperlipidemia, and fucoidans are found to possess hypolipidemic effect. This study was designed to investigate the lipid-lowering effect of the fucoidan from the brown seaweed A. nodosum and whether it improves RCT-related genes expression in C57 BL/6J mice. Our results indicated that fucoidan A3 (100 mg/kg/day) intervention significantly reduced plasma total cholesterol (~23.2%), triglyceride (~48.7%) and fat pad index. This fucoidan significantly increased the mRNA expression of low-density lipoprotein receptor (LDLR), scavenger receptor B type 1 (SR-B1), cholesterol 7 alpha-hydroxylase A1 (CYP7A1), liver X receptor (LXR) ß, ATP-binding cassette transporter (ABC) A1 and sterol regulatory element-binding protein (SREBP) 1c, and decreased the expression of peroxisome proliferator-activated receptor (PPAR) γ, however, it had no effect on the expression of proprotein convertase subtilisin/kexin type 9, PPARα, LXRα, SREBP-2, ABCG1, ABCG8 and Niemann-Pick C1-like 1. These results demonstrated that this fucoidan improved lipid transfer from plasma to the liver by activating SR-B1 and LDLR, and up-regulated lipid metabolism by activating LXRß, ABCA1 and CYP7A1. In conclusion, this fucoidan lowers lipid by enhancing RCT-related genes expression, and it can be explored as a potential candidate for prevention or treatment of lipid disorders.


Assuntos
Ascophyllum/química , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperlipidemias/genética , Polissacarídeos/farmacologia , Alga Marinha/química , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Modelos Animais de Doenças , Hiperlipidemias/metabolismo , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Intestino Delgado/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/química , RNA Mensageiro , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
5.
Int J Biol Macromol ; 131: 264-272, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30876902

RESUMO

Water extracts of the edible mushroom Cordyceps militaris possess a lipid-lowering effect. However, the types of components and how they exert this effect are not clear. In this study, two novel polysaccharides, CM1 and CMS, were isolated, and their cholesterol efflux improving capacity was investigated in vitro. The molecular weight of CM1 was approximately 700 kDa, and its main chain was consisted of (1 → 4)-ß-D-Glcp and (1 → 2)-α-D-manp branched at the O-6 positions of (1 → 2,6)-α-D-manp with (1 → 2) linked-ß-D-galf, (1 → 2)-α-D-manp or methyl and terminated with ß-D-Galf and α-D-Manp. The molecular weight of CMS was approximately 18.2 kDa, and it was a novel (1 → 6)-ß-D-Glcp linked glucan. Both CM1 and CMS significantly increased [3H]-cholesterol efflux by activating the protein expression of ATP-binding cassette (ABC) G1. However, they showed no significant influence on the proteins expression of ABCA1 and scavenger receptor B type 1. Therefore, CM1 and CMS are effective water-soluble components with potential lipid-lowering activity. They may be exploited as potential candidates for dyslipidaemia-related diseases such as atherosclerosis.


Assuntos
Colesterol/metabolismo , Cordyceps/química , Cordyceps/metabolismo , Polissacarídeos/química , Agaricales/química , Agaricales/metabolismo , Metabolismo dos Lipídeos , Estrutura Molecular , Peso Molecular , Polissacarídeos/isolamento & purificação , Análise Espectral
6.
Lipids Health Dis ; 18(1): 24, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678697

RESUMO

BACKGROUND: N-acetylneuraminic acid (NANA) is the major form of sialic acid in mammals, and the plasma NANA level is increased in patients with cardiovascular diseases. Exogenous supplement of NANA has been demonstrated to reduce hyperlipidaemia and the formation of atherosclerotic lesions; however, the underlying mechanisms have not yet been clarified. The aim of this study is to investigate whether exogenous supplement of NANA improves reverse cholesterol transprot (RCT) in vivo. METHODS: Apolipoprotein E-deficient mice fed a high-fat diet were used to investigate the effect of NANA on RCT by [3H]-cholesterol-loaded macrophages, and the underlying mechanism was further investigated by various molecular techniques using fenofibrate as a positive control. RESULTS: Our novel results demonstrated that exogenous supplement of NANA significantly improved [3H]-cholesterol transfer from [3H]-cholesterol-loaded macrophages to the plasma (an increase of > 42.9%), liver (an increase of 35.8%), and finally to the feces (an increase of 50.4% from 0 to 24 h) for excretion in apolipoprotein E-deficient mice fed a high-fat diet. In addition, NANA up regulated the protein expression of ATP-binding cassette (ABC) G1 and peroxisome proliferator-activated receptor α (PPARα), but not the protein expression of ABCA1and scavenger receptor B type 1 in the liver. Therefore, the underlying mechanism of NANA in improving RCT may be partially due to the elevated protein levels of PPARα and ABCG1. CONCLUSION: Exogenous supplement of NANA improves RCT in apolipoprotein E-deficient mice fed a high-fat diet mainly by improving the protein expression of PPARα and ABCG1. These results are helpful in explaining the lipid-lowering effect of NANA.


Assuntos
Apolipoproteínas E/genética , Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Ácido N-Acetilneuramínico/administração & dosagem , Animais , Apolipoproteínas E/metabolismo , Doenças Cardiovasculares/dietoterapia , Doenças Cardiovasculares/patologia , Colesterol/genética , Dieta Hiperlipídica , Suplementos Nutricionais , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Ácido N-Acetilneuramínico/metabolismo
7.
Elife ; 82019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642431

RESUMO

Animals respond to mitochondrial stress with the induction of mitochondrial unfolded protein response (UPRmt). A cascade of events occur upon UPRmt activation, ultimately triggering a transcriptional response governed by two transcription factors: DVE-1 and ATFS-1. Here we identify SUMO-specific peptidase ULP-4 as a positive regulator of C. elegans UPRmt to control SUMOylation status of DVE-1 and ATFS-1. SUMOylation affects these two axes in the transcriptional program of UPRmt with distinct mechanisms: change of DVE-1 subcellular localization vs. change of ATFS-1 stability and activity. Our findings reveal a post-translational modification that promotes immune response and lifespan extension during mitochondrial stress.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/fisiologia , Cisteína Endopeptidases/metabolismo , Imunidade Inata , Longevidade/fisiologia , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cisteína Endopeptidases/genética , Lisina/metabolismo , Modelos Biológicos , Estabilidade Proteica , Transdução de Sinais , Sumoilação , Transcrição Gênica
8.
Elife ; 62017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027899

RESUMO

Metformin, a widely used first-line drug for treatment of type 2 diabetes (T2D), has been shown to extend lifespan and delay the onset of age-related diseases. However, its primary locus of action remains unclear. Using a pure in vitro reconstitution system, we demonstrate that metformin acts through the v-ATPase-Ragulator lysosomal pathway to coordinate mTORC1 and AMPK, two hubs governing metabolic programs. We further show in Caenorhabditis elegans that both v-ATPase-mediated TORC1 inhibition and v-ATPase-AXIN/LKB1-mediated AMPK activation contribute to the lifespan extension effect of metformin. Elucidating the molecular mechanism of metformin regulated healthspan extension will boost its therapeutic application in the treatment of human aging and age-related diseases.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Hipoglicemiantes/metabolismo , Lisossomos/metabolismo , Metformina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Longevidade/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...