Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Dis ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39012669

RESUMO

The accumulation of senescent cells is an important factor in the complex progression of aging, with significant implications for the development of numerous diseases. Thus, understanding the fundamental mechanisms of senescence is paramount for advancing preventive and therapeutic approaches to age-related conditions. Important to this pursuit is the precise identification and examination of senescent cells, contingent upon the recognition of specific biomarkers. Historically, detection methods relied on assessing molecular protein and mRNA levels and various staining techniques. While these conventional approaches have contributed substantially to the field, they possess limitations in capturing the dynamic evolution of cellular aging in real time. The emergence of novel technologies has led to a paradigm shift in senescence research. Gene-edited mouse models and the application of advanced probes have revolutionized our ability to detect senescent cells. These cutting-edge methodologies provide a more detailed and accurate means of dynamically monitoring, characterizing and potentially eliminating senescent cells, thus enhancing our understanding of the complex mechanisms of aging. This review comprehensively explores both traditional and innovative senescent cell detection methods, elucidating their advantages, limitations and implications for future investigations and could serve as a comprehensive guide and catalyst for further advancements in the understanding of aging and associated pathologies.

2.
Differentiation ; 138: 100789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896972

RESUMO

Osteoclast (OC) differentiation, vital for bone resorption, depends on osteoclast and precursor fusion. Osteoprotegerin (OPG) inhibits osteoclast differentiation. OPG's influence on fusion and mechanisms is unclear. Osteoclasts and precursors were treated with OPG alone or with ATP. OPG significantly reduced OC number, area and motility and ATP mitigated OPG's inhibition. However, OPG hardly affected the motility of precusors. OPG downregulated fusion-related molecules (CD44, CD47, DC-STAMP, ATP6V0D2) in osteoclasts, reducing only CD47 in precursors. OPG reduced Connexin43 phosphorylated forms (P1 and P2) in osteoclasts, affecting only P2 in precursors. OPG disrupted subcellular localization of CD44, CD47, DC-STAMP, ATP6V0D2, and Connexin43 in both cell types. Findings underscore OPG's multifaceted impact, inhibiting multinucleated osteoclast and mononuclear precursor fusion through distinct molecular mechanisms. Notably, ATP mitigates OPG's inhibitory effect, suggesting a potential regulatory role for the ATP signaling pathway. This study enhances understanding of intricate processes in osteoclast differentiation and fusion, offering insights into potential therapeutic targets for abnormal bone metabolism.


Assuntos
Trifosfato de Adenosina , Diferenciação Celular , Osteoclastos , Osteoprotegerina , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Osteoclastos/metabolismo , Osteoclastos/citologia , Animais , Trifosfato de Adenosina/metabolismo , Camundongos , Conexina 43/metabolismo , Conexina 43/genética , Fusão Celular , Antígeno CD47/metabolismo , Antígeno CD47/genética , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas do Tecido Nervoso
3.
Am J Alzheimers Dis Other Demen ; 38: 15333175231205445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818604

RESUMO

Human beings have always pursued a prolonged lifespan, while the aging of the nervous system is associated with a large variety of diseases. Pathological aging of the nervous system results in a series of neurodegenerative diseases and can cause disability and death in the elderly. Therefore, there is an urgent need for the prevention and treatment of nervous system aging. Chinese herbal medicines have a long history, featuring rich and safe ingredients, and have great potential for the development of anti-aging treatment. We searched the publications on PubMed with key words "anti-aging of the nervous system" and "Chinese herbal medicine" in recent 10 years, and found sixteen Chinese herbal medicines. Then by comparing their popularity of use as well as active components based on the research articles, five common Chinese herbal medicines namely Ginseng Radix, Lycii Fructus, Astragali Radix, Coptidis Rhizoma and Ginkgo Folium, were confirmed to be the most related to anti-nervous system aging and neural degenerative diseases. At the same time, the active ingredients, research models, action mechanisms and curative effects of these five common Chinese herbal medicines were reviewed. From the five common Chinese herbal medicines reviewed in this paper, many encouraging effects of Chinese herbal medicines on treating nervous system aging and related diseases were revealed and more potent herbs would be explored with the help of the proposed possible mechanisms.


Assuntos
Medicamentos de Ervas Chinesas , Doenças Neurodegenerativas , Humanos , Idoso , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Envelhecimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...