Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 28(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264963

RESUMO

Porous gelatin microspheres (GMSs) were constructed to enhance the neuroprotective effects of fibroblast growth factor 10 (FGF10) against spinal cord injury (SCI). The GMSs were prepared using a water­in­oil emulsion, followed by cross­linking, washing and drying. The blank GMSs had a mean particle size of 35 µm, with a coarse and porous surface. FGF10 was encapsulated within bulk GMSs via diffusion. To evaluate the effects of the FGF10­GMSs, locomotion tests were performed as a measure of the functional recovery of rats. Hematoxylin and eosin and Nissl staining were used to quantify tissue injury, and Evans blue staining was used to evaluate blood­spinal cord barrier restoration. Western blotting and TUNEL assays were employed to assess apoptotic activity. Immunohistochemical staining of neurofilament antibodies (NF200) was used to evaluate axonal rehabilitation. Compared with the groups intravenously administered FGF10 alone, disruption of the blood­spinal cord barrier and tissue injury were attenuated in the FGF10­GMS group; this group also showed less neuronal apoptosis, as well as enhanced neuronal and axonal rehabilitation. Implantable porous GMSs could serve as carriers for FGF10 in the treatment of SCI.


Assuntos
Gelatina , Traumatismos da Medula Espinal , Ratos , Animais , Gelatina/metabolismo , Gelatina/farmacologia , Ratos Sprague-Dawley , Microesferas , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 10 de Crescimento de Fibroblastos/farmacologia , Porosidade , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...