Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Agric Food Chem ; 72(15): 8704-8714, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572931

RESUMO

Miltiradiene serves as a crucial precursor in the synthesis of various high-value abietane-type diterpenes, exhibiting diverse pharmacological activities. Previous efforts to enhance miltiradiene production have primarily focused on the mevalonate acetate (MVA) pathway. However, limited emphasis has been placed on optimizing the supply of acetyl-CoA and NADPH. In this study, we constructed a platform yeast strain for miltiradiene production by reinforcing the biosynthetic pathway of geranylgeranyl diphosphate (GGPP) and acetyl-CoA, and addressing the imbalance between the supply and demand of the redox cofactor NADPH within the cytoplasm, resulting in an increase in miltiradiene yield to 1.31 g/L. Furthermore, we conducted modifications to the miltiradiene synthase fusion protein tSmKSL1-CfTPS1. Finally, the comprehensive engineering strategies and protein modification strategies culminated in 1.43 g/L miltiradiene in the engineered yeast under shake flask culture conditions. Overall, our work established efficient yeast cell factories for miltiradiene production, providing a foothold for heterologous biosynthesis of abietane-type diterpenes.


Assuntos
Diterpenos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Abietanos , Acetilcoenzima A/metabolismo , NADP/metabolismo , Diterpenos/metabolismo , Engenharia Metabólica/métodos
3.
EJHaem ; 5(2): 333-345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633121

RESUMO

ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukaemia (ALL) and is associated with favorable outcomes, especially in low-risk children. However, as many as 10% of children relapse within 3 years, and such early relapses have poor survival. Identifying children at risk for early relapse is an important challenge. We interrogated data from 87 children with low-risk ETV6::RUNX1-positive B-cell ALL and with available preserved bone marrow samples (discovery cohort). We profiled somatic point mutations in a panel of 559 genes and genome-wide transcriptome and single-nucleotide variants. We found high TIMD4 expression (> 85th-percentile value) at diagnosis was the most important independent prognostic factor of early relapse (hazard ratio [HR] = 5.07 [1.76, 14.62]; p = 0.03). In an independent validation cohort of low-risk ETV6::RUNX1-positive B-cell ALL (N = 68) high TIMD4 expression at diagnosis had an HR = 4.78 [1.07, 21.36] (p = 0.04) for early relapse. In another validation cohort including 78 children with low-risk ETV6::RUNX1-negative B-cell ALL, high TIMD4 expression at diagnosis had an HR = 3.93 [1.31, 11.79] (p = 0.01). Our results suggest high TIMD4 expression at diagnosis in low-risk B-cell ALL in children might be associated with high risk for early relapse.

4.
JCI Insight ; 9(5)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319719

RESUMO

Cauterization of the root of the left coronary artery (LCA) in the neonatal heart on postnatal day 1 (P1) resulted in large, reproducible lesions of the left ventricle (LV), and an attendant marked adaptive response in the right ventricle (RV). The response of both chambers to LV myocardial infarction involved enhanced cardiomyocyte (CM) division and binucleation, as well as LV revascularization, leading to restored heart function within 7 days post surgery (7 dps). By contrast, infarction of P3 mice resulted in cardiac scarring without a significant regenerative and adaptive response of the LV and the RV, leading to subsequent heart failure and death within 7 dps. The prominent RV myocyte expansion in P1 mice involved an acute increase in pulmonary arterial pressure and a unique gene regulatory response, leading to an increase in RV mass and preserved heart function. Thus, distinct adaptive mechanisms in the RV, such as CM proliferation and RV expansion, enable marked cardiac regeneration of the infarcted LV at P1 and full functional recovery.


Assuntos
Ventrículos do Coração , Infarto do Miocárdio , Animais , Camundongos , Ventrículos do Coração/patologia , Miócitos Cardíacos/patologia , Animais Recém-Nascidos , Infarto do Miocárdio/patologia , Regeneração
5.
J Nat Prod ; 87(2): 176-185, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38277488

RESUMO

Celastrol is a bioactive pentacyclic triterpenoid with promising therapeutic effects that is mainly distributed in Celastraceae plants. Although some enzymes involved in the celastrol biosynthesis pathway have been reported, many biosynthetic steps remain unknown. Herein, transcriptomics and metabolic profiles of multiple species in Celastraceae were integrated to screen for cytochrome P450s (CYPs) that are closely related to celastrol biosynthesis. The CYP716 enzyme, TwCYP716C52, was found to be able to oxidize the C-2 position of polpunonic acid, a precursor of celastrol, to form the wilforic acid C. RNAi-mediated repression of TwCYP716C52 in Tripterygium wilfordii suspension cells further confirmed its involvement in celastrol biosynthesis. The C-2 catalytic mechanisms of TwCYP716C52 were further explored by using molecular docking and site-directed mutagenesis experiments. Moreover, a modular optimization strategy was used to construct an engineered yeast to produce wilforic acid C at a titer of 5.8 mg·L-1. This study elucidates the celastrol biosynthetic pathway and provides important functional genes and sufficient precursors for further enzyme discovery.


Assuntos
Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/metabolismo , Simulação de Acoplamento Molecular , Triterpenos Pentacíclicos , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Tripterygium/genética
6.
Trends Biotechnol ; 42(6): 699-713, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38233232

RESUMO

Terpenoids display chemical and structural diversities as well as important biological activities. Despite their extreme variability, the range of these structures is limited by the scope of natural products that canonically derive from interconvertible five-carbon (C5) isoprene units. New approaches have recently been developed to expand their structural diversity. This review systematically explores the combinatorial biosynthesis of noncanonical building blocks via the coexpression of the canonical mevalonate (MVA) pathway and C-methyltransferases (C-MTs), or by using the lepidopteran mevalonate (LMVA) pathway. Unnatural terpenoids can be created from farnesyl diphosphate (FPP) analogs by chemobiological synthesis and terpene cyclopropanation by artificial metalloenzymes (ArMs). Advanced technologies to accelerate terpene biosynthesis are discussed. This review provides a valuable reference for increasing the diversity of valuable terpenoids and their derivatives, as well as for expanding their potential applications.


Assuntos
Biologia Sintética , Terpenos , Terpenos/química , Terpenos/metabolismo , Biologia Sintética/métodos , Ácido Mevalônico/metabolismo , Ácido Mevalônico/química , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos de Poli-Isoprenil/química , Sesquiterpenos/química , Sesquiterpenos/metabolismo
7.
Blood ; 143(4): 320-335, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37801708

RESUMO

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer with resistant clonal propagation in recurrence. We performed high-throughput droplet-based 5' single-cell RNA with paired T-cell receptor (TCR) sequencing of paired diagnosis-relapse (Dx_Rel) T-ALL samples to dissect the clonal diversities. Two leukemic evolutionary patterns, "clonal shift" and "clonal drift" were unveiled. Targeted single-cell DNA sequencing of paired Dx_Rel T-ALL samples further corroborated the existence of the 2 contrasting clonal evolution patterns, revealing that dynamic transcriptional variation might cause the mutationally static clones to evolve chemotherapy resistance. Analysis of commonly enriched drifted gene signatures showed expression of the RNA-binding protein MSI2 was significantly upregulated in the persistent TCR clonotypes at relapse. Integrated in vitro and in vivo functional studies suggested that MSI2 contributed to the proliferation of T-ALL and promoted chemotherapy resistance through the posttranscriptional regulation of MYC, pinpointing MSI2 as an informative biomarker and novel therapeutic target in T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas de Ligação a RNA , Humanos , Evolução Clonal/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Recidiva , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linfócitos T/metabolismo
8.
New Phytol ; 241(4): 1720-1731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013483

RESUMO

Wilforlide A is one of the main active constituents produced in trace amounts in Tripterygium wilfordii Hook F, which has excellent anti-inflammatory and immune suppressive effects. Despite the seeming structural simplicity of the compound, the biosynthetic pathway of wilforlide A remains unknown. Gene-specific expression analysis and genome mining were used to identify the gene candidates, and their functions were studied in vitro and in vivo. A modularized two-step (M2S) technique and CRISPR-Cas9 methods were used to construct engineering yeast. Here, we identified a cytochrome P450, TwCYP82AS1, that catalyses C-22 hydroxylation during wilforlide A biosynthesis. We also found that TwCYP712K1 to K3 can further oxidize the C-29 carboxylation of oleanane-type triterpenes in addition to friedelane-type triterpenes. Reconstitution of the biosynthetic pathway in engineered yeast increased the precursor supply, and combining TwCYP82AS1 and TwCYP712Ks produced abrusgenic acid, which was briefly acidified to achieve the semisynthesis of wilforlide A. Our work presents an alternative metabolic engineering approach for obtaining wilforlide A without relying on extraction from plants.


Assuntos
Ácido Oleanólico/análogos & derivados , Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Anti-Inflamatórios/metabolismo
9.
BMC Bioinformatics ; 24(1): 450, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017410

RESUMO

BACKGROUND: Acute myeloid leukaemia (AML) is characterised by the malignant accumulation of myeloid progenitors with a high recurrence rate after chemotherapy. Blasts (leukaemia cells) exhibit a complete myeloid differentiation hierarchy hiding a wide range of temporal information from initial to mature clones, including genesis, phenotypic transformation, and cell fate decisions, which might contribute to relapse in AML patients. METHODS: Based on the landscape of AML surface antigens generated by mass cytometry (CyTOF), we combined manifold analysis and principal curve-based trajectory inference algorithm to align myelocytes on a single-linear evolution axis by considering their phenotype continuum that correlated with differentiation order. Backtracking the trajectory from mature clusters located automatically at the terminal, we recurred the molecular dynamics during AML progression and confirmed the evolution stage of single cells. We also designed a 'dispersive antigens in neighbouring clusters exhibition (DANCE)' feature selection method to simplify and unify trajectories, which enabled the exploration and comparison of relapse-related traits among 43 paediatric AML bone marrow specimens. RESULTS: The feasibility of the proposed trajectory analysis method was verified with public datasets. After aligning single cells on the pseudotime axis, primitive clones were recognized precisely from AML blasts, and the expression of the inner molecules before and after drug stimulation was accurately plotted on the trajectory. Applying DANCE to 43 clinical samples with different responses for chemotherapy, we selected 12 antigens as a general panel for myeloblast differentiation performance, and obtain trajectories to those patients. For the trajectories with unified molecular dynamics, CD11c overexpression in the primitive stage indicated a good chemotherapy outcome. Moreover, a later initial peak of stemness heterogeneity tended to be associated with a higher risk of relapse compared with complete remission. CONCLUSIONS: In this study, pseudotime was generated as a new single-cell feature. Minute differences in temporal traits among samples could be exhibited on a trajectory, thus providing a new strategy for predicting AML relapse and monitoring drug responses over time scale.


Assuntos
Antígenos de Superfície , Leucemia Mieloide Aguda , Criança , Humanos , Recidiva Local de Neoplasia , Leucemia Mieloide Aguda/genética , Fenótipo , Recidiva
10.
Angew Chem Int Ed Engl ; 62(48): e202313429, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37840440

RESUMO

The oxidosqualene cyclase (OSC) catalyzed cyclization of the linear substrate (3S)-2,3-oxidosqualene to form diverse pentacyclic triterpenoid (PT) skeletons is one of the most complex reactions in nature. Friedelin has a unique PT skeleton involving a fascinating nine-step cation shuttle run (CSR) cascade rearrangement reaction, in which the carbocation formed at C2 moves to the other side of the skeleton, runs back to C3 to yield a friedelin cation, which is finally deprotonated. However, as crystal structure data of plant OSCs are lacking, it remains unknown why the CSR cascade reactions occur in friedelin biosynthesis, as does the exact catalytic mechanism of the CSR. In this study, we determined the first cryogenic electron microscopy structure of a plant OSC, friedelin synthase, from Tripterygium wilfordii Hook. f (TwOSC). We also performed quantum mechanics/molecular mechanics simulations to reveal the energy profile for the CSR cascade reaction and identify key residues crucial for PT skeleton formation. Furthermore, we semirationally designed two TwOSC mutants, which significantly improved the yields of friedelin and ß-amyrin, respectively.


Assuntos
Transferases Intramoleculares , Triterpenos , Triterpenos/química , Transferases Intramoleculares/genética , Catálise , Cátions
11.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834452

RESUMO

ß-Elemene (C15H24), a sesquiterpenoid compound isolated from the volatile oil of Curcuma wenyujin, has been proven to be effective for multiple cancers and is widely used in clinical treatment. Unfortunately, the ß-elemene content in C. wenyujin is very low, which cannot meet market demands. Our previous research showed that methyl jasmonate (MeJA) induced the accumulation of ß-elemene in C. wenyujin. However, the regulatory mechanism is unclear. In this study, 20 jasmonate ZIM-domain (JAZ) proteins in C. wenyujin were identified, which are the core regulatory factors of the JA signaling pathway. Then, the conservative domains, motifs composition, and evolutionary relationships of CwJAZs were analyzed comprehensively and systematically. The interaction analysis indicated that CwJAZs can form homodimers or heterodimers. Fifteen out of twenty CwJAZs were significantly induced via MeJA treatment. As the master switch of the JA signaling pathway, the CwMYC2-like protein has also been identified and demonstrated to interact with CwJAZ2/3/4/5/7/15/17/20. Further research found that the overexpression of the CwMYC2-like gene increased the accumulation of ß-elemene in C. wenyujin leaves. Simultaneously, the expressions of HMGR, HMGS, DXS, DXR, MCT, HDS, HDR, and FPPS related to ß-elemene biosynthesis were also up-regulated by the CwMYC2-like protein. These results indicate that CwJAZs and the CwMYC2-like protein respond to the JA signal to regulate the biosynthesis of ß-elemene in C. wenyujin.


Assuntos
Curcuma , Sesquiterpenos , Curcuma/metabolismo , Sesquiterpenos/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo
12.
Foods ; 12(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37761059

RESUMO

This study investigated the effects of three extraction methods, including cold pressing (CP), microwave pretreatment pressing (MP), and supercritical fluid extraction (SFE), on the yield, physicochemical properties, bioactive compounds content, and antioxidant properties of pumpkin seed oil (PSO). Furthermore, the correlation between bioactive compounds and the antioxidant properties of PSO was determined. The results revealed that the yield of PSO extracted using the three methods was in the order of SFE > MP > CP. Additionally, the PSO generated by SFE showed the highest unsaturated fatty acid content, followed by MP and CP. Additionally, MP-PSO exhibited the highest acid value and saponification value, while SFE-PSO displayed the highest moisture content, peroxide value, and iodine value. Moreover, the PSO generated by MP demonstrated superior antioxidant properties compared to that of PSOs from CP and SFE in the oxidation induction, DPPH, FRAP, and ABTS tests. Finally, the correlation analysis revealed that specific types of bioactive compounds, such as ß-sitosterol and γ-tocopherol, were highly correlated with the antioxidant properties of PSOs. Consequently, this study provides comprehensive knowledge regarding PSO extraction, physicochemical properties, bioactive compound extraction, and the correlated antioxidant properties.

13.
Front Oncol ; 13: 1106890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910656

RESUMO

Occult breast cancer is an uncommon type of breast cancer and its diagnosis is challenging. It is usually invisible on multiple imaging examines. Metastases to the rectum and inguinal lymph nodes from occult breast lobular cancer are even rarer. 68Ga-DOTA peptides can image neuroendocrine tumors by targeting specific somatostatin receptors. Besides, other tumors, including breast cancer, have been shown to express somatostatin receptors. In this case, we presented a 63-year-old woman who underwent both 18F-FDG and 68Ga-DOTATATE PET/CT due to a rectal polyp. An endoscopic excision biopsy confirmed metastatic carcinoma of suspected breast origin, but subsequent ultrasound and MRI showed no signs of malignancy in the breast and adnexa uteri. PET/CT showed obvious 68Ga-DOTATATE activity in bilateral axillary and right inguinal lymph nodes with mild 18F-FDG uptake. Final histopathology at the left axillary, right inguinal lymph nodes, and rectum indicated metastases from breast cancer while the origin remained radiologically occult. Additionally, one uterine fibroids was found with positive uptake of 68Ga-DOTATATE and negative uptake of 18F-FDG. This case suggested that 68Ga-DOTATAE PET/CT may be an effective supplement in diagnosing OBC lymph node metastases with mild 18F-FDG uptake, and it may provide a new technology for the clinical diagnosis of occult breast cancer.

14.
Int Immunopharmacol ; 116: 109753, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738675

RESUMO

BACKGROUND: Natural killer (NK) cells are a subtype of lymphocytes with the ability to quickly and efficiently identify and eliminate tumor cells. In the presence of IL2, NK cells can divide rapidly but in limited numbers. According to previous studies, in vivo treatment with histone deacetylase (HDAC) inhibitors did not impair NK-cell function. This study aimed to investigate the effect of HDAC inhibitors on NK-cell proliferation and the underlying regulatory mechanism. METHODS: NK92 cells, primary NK (pNK) cells, and CD19-CAR-NK92 cells were treated with low concentrations of pan-HDACi Dacinostat (Dac) and Panobinostat (Pan) in the presence of IL2, and Cell Counting Kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays were used to assess cell proliferation and apoptosis. The expression of granzyme B was detected by immunofluorescence, and the expression of CD107a and NKG2D was determined by flow cytometry. The downstream regulatory genes were identified by RNA-seq, and the "JAK-STAT signaling pathway"- and "Cell cycle signaling pathway"-related genes were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. The JAK2V617F mouse model was constructed to simulate the upregulation of the JAK2 signaling pathway in vivo, and the NK proliferation was evaluated by flow cytometry. A tumor-bearing nude mouse model was constructed to determine the anti-tumor efficacy of NK92 cells following Dac treatment. RESULTS: In the presence of IL2, the proliferation rate of NK92 cells, pNK cells, and CD19-CAR-NK92 cells treated with pan-HDACi Dac and Pan at low nanomolar doses was significantly increased, although cell function was unaffected. Low doses of Dac upregulated the JAK-STAT signaling pathway and enhance the cell cycle via that pathway. In addition, the in vivo experiment in nude mice showed that the capacity of Dac treated NK92 cells to eliminate tumor cells was unaffected. CONCLUSION: Low nanomolar doses of Pan-HDACi enhanced IL2-induced NK cell proliferation without compromising the functioning of NK cells.


Assuntos
Inibidores de Histona Desacetilases , Interleucina-2 , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos Nus , Panobinostat/metabolismo , Panobinostat/farmacologia , Transdução de Sinais , Fator de Transcrição STAT5/metabolismo
15.
Nat Commun ; 14(1): 875, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797237

RESUMO

Triptolide is a valuable multipotent antitumor diterpenoid in Tripterygium wilfordii, and its C-14 hydroxyl group is often selected for modification to enhance both the bioavailability and antitumor efficacy. However, the mechanism for 14-hydroxylation formation remains unknown. Here, we discover 133 kb of tandem duplicated CYP82Ds encoding 11 genes on chromosome 12 and characterize CYP82D274 and CYP82D263 as 14-hydroxylases that catalyze the metabolic grid in triptolide biosynthesis. The two CYP82Ds catalyze the aromatization of miltiradiene, which has been repeatedly reported to be a spontaneous process. In vivo assays and evaluations of the kinetic parameters of CYP82Ds indicate the most significant affinity to dehydroabietic acid among multiple intermediates. The precursor 14-hydroxy-dehydroabietic acid is successfully produced by engineered Saccharomyces cerevisiae. Our study provides genetic elements for further elucidation of the downstream biosynthetic pathways and heterologous production of triptolide and of the currently intractable biosynthesis of other 14-hydroxyl labdane-type secondary metabolites.


Assuntos
Diterpenos , Fenantrenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hidroxilação , Diterpenos/metabolismo , Fenantrenos/metabolismo , Compostos de Epóxi/metabolismo
16.
Br J Haematol ; 201(3): 520-529, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36695443

RESUMO

Due to the infrequency of essential thrombocythemia (ET) in children, little is known about its pathophysiological mechanism. To learn about the clinical and molecular features of Chinese children with ET, we retrospectively analysed 40 children with ET in a single center from 2015-2021. More than half of the children (51.3%, 20/39) were asymptomatic at diagnosis. Nearly half of the children (48.7%, 19/39) had microvascular symptoms, including headache, dizziness, stomachache, and paresthesia. Only two cases experienced vascular events. The proportion of children with typical "driver gene mutations" (i.e., JAK2 p.V617F, CALR exon 9, or MPL exon 10 mutation) was low (12.5%, 5/40). The equivalent ratio of children carried atypical driver gene mutations; however, 30 (75%) patients did not harbour driver gene mutations. Children carrying JAK2 p.V617F had lower platelet count (938 × 109 /L vs. 1654 × 109 /L, p = 0.031) compared to those without driver gene mutations. Cases harbouring typical driver mutations had higher median WBC counts than those without driver gene mutations (15.14 × 109 /L vs. 8.01 × 109 /L, p = 0.015). Compared to those without driver gene mutations, cases carrying typical and atypical driver gene mutations were both younger (median ages were 12, 6, and 7 years old, respectively; p = 0.023). The most prevalent non-driver gene mutations and those mutations with prognostic significance in adult counterparts were less common in children with ET compared to adults with ET.


Assuntos
Trombocitemia Essencial , Criança , Humanos , Calreticulina/genética , População do Leste Asiático , Janus Quinase 2/genética , Mutação , Estudos Retrospectivos , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/genética
17.
Plant Biotechnol J ; 21(1): 165-175, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36161753

RESUMO

Selaginella moellendorffii miltiradiene synthase (SmMDS) is a unique bifunctional diterpene synthase (diTPS) that catalyses the successive cyclization of (E,E,E)-geranylgeranyl diphosphate (GGPP) via (+)-copalyl diphosphate (CPP) to miltiradiene, which is a crucial precursor of important medicinal compounds, such as triptolide, ecabet sodium and carnosol. Miltiradiene synthetic processes have been studied in monofunctional diTPSs, while the precise mechanism by which active site amino acids determine product simplicity and the experimental evidence for reaction intermediates remain elusive. In addition, how bifunctional diTPSs work compared to monofunctional enzymes is attractive for detailed research. Here, by mutagenesis studies of SmMDS, we confirmed that pimar-15-en-8-yl+ is an intermediate in miltiradiene synthesis. Moreover, we determined the apo-state and the GGPP-bound state crystal structures of SmMDS. By structure analysis and mutagenesis experiments, possible contributions of key residues both in class I and II active sites were suggested. Based on the structural and functional analyses, we confirmed the copal-15-yl+ intermediate and unveiled more details of the catalysis process in the SmMDS class I active site. Moreover, the structural and experimental results suggest an internal channel for (+)-CPP produced in the class II active site moving towards the class I active site. Our research is a good example for intermediate identification of diTPSs and provides new insights into the product specificity determinants and intermediate transport, which should greatly facilitate the precise controlled synthesis of various diterpenes.


Assuntos
Alquil e Aril Transferases , Diterpenos , Alquil e Aril Transferases/genética , Diterpenos/metabolismo
18.
Front Plant Sci ; 13: 932966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035671

RESUMO

Germacrene A (GA) is a key intermediate for the synthesis of medicinal active compounds, especially for ß-elemene, which is a broad-spectrum anticancer drug. The production of sufficient GA in the microbial platform is vital for the precursors supply of active compounds. In this study, Escherichia coli BL21 Star (DE3) was used as the host and cultivated in SBMSN medium, obtaining a highest yield of FPP. The GA synthase from Lactuca sativa (LTC2) exhibited the highest level of GA production. Secondly, two residues involved in product release (T410 and T392) were substituted with Ser and Ala, respectively, responsible for relatively higher activities. Next, substitution of selected residues S243 with Asn caused an increase in activity. Furthermore, I364K-T410S and T392A-T410S were created by combination with the beneficial mutation, and they demonstrated dramatically enhanced titers with 1.90-fold and per-cell productivity with 5.44-fold, respectively. Finally, the production titer of GA reached 126.4 mg/L, and the highest productivity was 7.02 mg/L.h by the I364K-T410S mutant in a shake-flask batch culture after fermentation for 18 h. To our knowledge, the productivity of the I364K-T410S mutant is the highest level ever reported. These results highlight a promising method for the industrial production of GA in E. coli, and lay a foundation for pathway reconstruction and the production of valuable natural sesquiterpenes.

19.
Front Plant Sci ; 13: 926715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845629

RESUMO

Squalene synthase (SQS), squalene epoxidase (SE), and oxidosqualene cyclase (OSC) are encoding enzymes in downstream biosynthetic pathway of triterpenoid in plants, but the relationship between three genes and celastrol accumulation in Tripterygium wilfordii still remains unknown. Gene transformation system in plant can be used for studying gene function rapidly. However, there is no report on the application of cambial meristematic cells (CMCs) and dedifferentiated cells (DDCs) in genetic transformation systems. Our aim was to study the effects of individual overexpression of TwSQS, TwSE, and TwOSC on terpenoid accumulation and biosynthetic pathway related gene expression through CMCs and DDCs systems. Overexpression vectors of TwSQS, TwSE, and TwOSC were constructed by Gateway technology and transferred into CMCs and DDCs by gene gun. After overexpression, the content of celastrol was significantly increased in CMCs compared with the control group. However, there was no significant increment of celastrol in DDCs. Meanwhile, the relative expression levels of TwSQS, TwSE, TwOSC, and terpenoid biosynthetic pathway related genes were detected. The relative expression levels of TwSQS, TwSE, and TwOSC were increased compared with the control group in both CMCs and DDCs, while the pathway-related genes displayed different expression trends. Therefore, it was verified in T. wilfordii CMCs that overexpression of TwSQS, TwSE, and TwOSC increased celastrol accumulation and had different effects on the expression of related genes in terpenoid biosynthetic pathway, laying a foundation for further elucidating the downstream biosynthetic pathway of celastrol through T. wilfordii CMCs system.

20.
PLoS One ; 17(6): e0270309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737688

RESUMO

Curcuma wenyujin is the source plant of three traditional Chinese medicines, which have been widely used in clinical treatment over 1000 years. The content of terpenes, the major medicinal active ingredients, is relatively low in this plant. Studies have shown that MeJA can promote terpenes biosynthesis in plants. However, the mechanism underlying the effect of MeJA in C. wenyujin remains unclear. In this work, the transcriptome of C. wenyujin leaves with MeJA treatment was analyzed to elucidate the regulation mechanism of MeJA-mediated terpene biosynthesis. Based on the RNA-seq data, 7,246 unigenes were differentially expressed with MeJA treatment. Expression pattern clustering of DEGs revealed that unigenes, related to JA biosynthesis and signal transduction, responded to exogenous MeJA stimulation on the early stage and maintained throughout the process. Subsequently, unigenes related to terpene biosynthesis pathway showed a significant up-regulation with 6 h treatment. The analysis results suggested that MeJA induced the expression of JA biosynthesis genes (such as LOXs, AOSs, AOCs, OPRs, and MFPs) and JA signal transduction core genes (JAZs and MYCs) to activate JA signaling pathway. Meanwhile, downstream JA-responsive genes presented up-regulated expression levels such as AACT, HMGSs, HMGRs, DXSs, DXRs, MCTs, HDSs, and HDRs, thus promoting terpenes biosynthesis. The transcriptional expressions of these genes were validated by qRT-PCR. In addition, six CwTPS genes in response to MeJA were identified. With MeJA treatment, the expression levels of CwTPSs were increased as well as those of the transcription factors MYB, NAC, bZIP, WRKY, AP2/ERF, and HLH. These TFs might potentially regulate terpenes biosynthesis. These results provide insights for regulation mechanism of terpenes biosynthesis.


Assuntos
Curcuma , Reguladores de Crescimento de Plantas , Acetatos/farmacologia , Curcuma/genética , Curcuma/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Terpenos/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...