Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 467
Filtrar
1.
BMC Public Health ; 24(1): 1738, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951834

RESUMO

Research indicates that COVID-19 has had adverse effects on the mental health of adolescents, exacerbating their negative psychological states. The purpose of this study is to investigate the impact of Physical Literacy (PL) on Negative Mental State caused by COVID-19 (NMSC) and identify potential factors related to NMSC and PL in Chinese adolescents. This cross-sectional study involved a total of 729 Chinese high school students with an average age of 16.2 ± 1.1 years. Participants' demographic data, PL data, and NMSC data were collected. PL and NMSC were measured using the self-reported Portuguese Physical Literacy Assessment Questionnaire (PPLA-Q), the Stress and Anxiety to Viral Epidemics-6 (SAVE-6), and the Fear of COVID-19 Scale (FCV-19). Adolescents in the current study demonstrated higher levels of NMSC and lower PL, with average scores of 3.45 and 2.26, respectively (on a scale of 5). Through multiple linear regression analysis, Motivation (MO), Confidence (CO), Emotional Regulation (ER), and Physical Regulation (PR) were identified as factors influencing NMSC in adolescents. The study findings contribute to providing guidance for actions aimed at alleviating NMSC among adolescents.


Assuntos
COVID-19 , Resiliência Psicológica , Adolescente , Feminino , Humanos , Masculino , China/epidemiologia , COVID-19/psicologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Transversais , População do Leste Asiático , Letramento em Saúde/estatística & dados numéricos , Saúde Mental , Inquéritos e Questionários
2.
Imeta ; 3(1): e154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868520

RESUMO

Structural variations (SVs) are a major source of domestication and improvement traits. We present the first duck pan-genome constructed using five genome assemblies capturing ∼40.98 Mb new sequences. This pan-genome together with high-depth sequencing data (∼46.5×) identified 101,041 SVs, of which substantial proportions were derived from transposable element (TE) activity. Many TE-derived SVs anchoring in a gene body or regulatory region are linked to duck's domestication and improvement. By combining quantitative genetics with molecular experiments, we, for the first time, unraveled a 6945 bp Gypsy insertion as a functional mutation of the major gene IGF2BP1 associated with duck bodyweight. This Gypsy insertion, to our knowledge, explains the largest effect on bodyweight among avian species (27.61% of phenotypic variation). In addition, we also examined another 6634 bp Gypsy insertion in MITF intron, which triggers a novel transcript of MITF, thereby contributing to the development of white plumage. Our findings highlight the importance of using a pan-genome as a reference in genomics studies and illuminate the impact of transposons in trait formation and livestock breeding.

3.
Chem Biol Drug Des ; 103(6): e14567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858165

RESUMO

BACKGROUND: To explore the anti-tumor and anti-virus key active ingredients of Sini Decoction Plus Ginseng Soup (SNRS) and their mechanisms. METHODS: The main ingredients of SNRS were analyzed by network pharmacology, and quercetin was identified as the key active ingredient. Then, we obtained the targets of quercetin by using Drugbank, PharmMapper, and SwissTargetPrediction databases. Then, the targets of HBV-related hepatocellular carcinoma (HBV-related HCC) were obtained by using Genecards database. In addition, using the gene expression profiles of HBV-related HCC patients in GEO database and the genes with the greatest survival difference in GEPIA 2 database identified the potential targets of quercetin. In addition, the mechanism of potential genes was studied through GO, KEGG analysis, and PPI network. Using AUC and survival analysis to evaluate the diagnostic and prognostic value of cyclin-dependent kinase 1 (CDK1) and CCNB1. Finally, the effects of quercetin on proliferation of Hep3B and HepG2215 cells and the level of CDK1 and CCNB1 were verified in vitro. ELISA was used to measure the expression levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) after the intervention by quercetin for 24 h and 48 h in HepG2215 cell. RESULTS: The first 10 key ingredients of SNRS were identified, and quercetin was the most key ingredient. The 101 potential quercetin targets were identified for the treatment of HBV-related HCC. GO and KEGG showed that 101 potential target enrichment in cancer and cell cycle regulation. By Venn analysis, CDK1 and CCNB1 were intersection targets, which could be used as potential targets for the action of quercetin on HBV-related HCC. Moreover, the expression of CDK1 and CCNB1 was highly expressed in the high-risk group, while the OS rate was low. The 1-year, 3-year and 5-year area under the curve (AUC) curves of CDK1 and CCNB1 were 0.724, 0.676, 0.622 and 0.745, 0.678, 0.634, respectively. Moreover, experimental results also showed that quercetin inhibited cell proliferation and reduced CDK1 expression in Hep3B and HepG2215 cells. The expressions of HBsAg and HBeAg in HepG2215 cell supernatant and cell gradually decreased with the increase of intervention time of quercetin and CDK1 inhibitor. CONCLUSIONS: Quercetin is a key ingredient of anti-HBV-related HCC activity and inhibits HBV replication in SNRS by inhibiting CDK1.


Assuntos
Proteína Quinase CDC2 , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Panax , Quercetina , Replicação Viral , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/farmacologia , Antivirais/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Proteína Quinase CDC2/efeitos dos fármacos , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B1/efeitos dos fármacos , Ciclina B1/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Panax/química , Quercetina/farmacologia , Replicação Viral/efeitos dos fármacos
4.
Cell Res ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918584

RESUMO

Migrasomes, enriched with signaling molecules such as chemokines, cytokines and angiogenic factors, play a pivotal role in the spatially defined delivery of these molecules, influencing critical physiological processes including organ morphogenesis and angiogenesis. The mechanism governing the accumulation of signaling molecules in migrasomes has been elusive. In this study, we show that secretory proteins, including signaling proteins, are transported into migrasomes by secretory carriers via both the constitutive and regulated secretion pathways. During cell migration, a substantial portion of these carriers is redirected to the rear of the cell and actively transported into migrasomes, driven by the actin-dependent motor protein Myosin-5a. Once at the migrasomes, these carriers fuse with the migrasome membrane through SNARE-mediated mechanisms. Inhibiting migrasome formation significantly reduces secretion, suggesting migrasomes as a principal secretion route in migrating cells. Our findings reveal a specialized, highly localized secretion paradigm in migrating cells, conceptually paralleling the targeted neurotransmitter release observed in neuronal systems.

5.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892178

RESUMO

The branch number is a crucial factor that influences density tolerance and is closely associated with the yield of soybean. However, its molecular regulation mechanisms remain poorly understood. This study cloned a candidate gene GmSPL9d for regulating the soybean branch number based on the rice OsSPL14 homologous gene. Meanwhile, the genetic diversity of the GmSPL9d was analyzed using 3599 resequencing data and identified 55 SNP/InDel variations, which were categorized into seven haplotypes. Evolutionary analysis classified these haplotypes into two groups: GmSPL9d H-I and GmSPL9d H-II. Soybean varieties carrying the GmSPL9d H-II haplotype exhibited a significantly lower branch number compared with those carrying the GmSPL9d H-I haplotype. Association analysis between the variation sites and branch number phenotypes revealed a significant correlation between the promoter variations and the branch number. Promoter activity assays demonstrated that the GmSPL9d H-II promoter displayed significantly higher activity than the GmSPL9d H-I promoter. Transgenic experiments confirmed that the plants that carried the GmSPL9d H-II promoter exhibited a significantly lower branch number compared with those that carried the GmSPL9d H-I promoter. These findings indicate that the variation in the GmSPL9d promoter affected its transcription level, leading to differences in the soybean branch number. This study provides valuable molecular targets for improving the soybean plant structure.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Haplótipos , Proteínas de Plantas , Regiões Promotoras Genéticas , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Plantas Geneticamente Modificadas/genética , Variação Genética , Fenótipo
6.
Dalton Trans ; 53(27): 11247-11251, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38938107

RESUMO

A novel sheet-like tin-based metal-organic framework exhibited a specific capacity for lithium storage as high as 1033.3 mAh g-1 at 200 mA g-1 with excellent cycling stability. This framework, due to its unique porous structure and multiple lithium storage sites, could better cope with challenges occurring during lithium insertion/extraction than could traditional tin materials.

7.
Cell Mol Immunol ; 21(7): 752-769, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822080

RESUMO

The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.


Assuntos
Proteína 11 Semelhante a Bcl-2 , Diferenciação Celular , Células Dendríticas , Homeostase , Fatores Reguladores de Interferon , Camundongos Endogâmicos C57BL , Fatores de Transcrição , Animais , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Células Dendríticas/metabolismo , Células Dendríticas/citologia , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Transcrição Gênica , Apoptose , RNA Polimerase II/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Transativadores/metabolismo , Transativadores/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos Knockout , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia
8.
Front Vet Sci ; 11: 1388227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711536

RESUMO

Diarrhea is a common gastrointestinal disorder in horses, with diet-induced diarrhea being an emerging challenge. This study aimed to investigate the gut microbiota differences in healthy and diet-induced diarrheic horses and evaluate the effectiveness of fecal microbiota transplantation (FMT) and carbonate buffer mixture (CBM) as potential therapeutic approaches. Twenty healthy horses were included in the study, with four groups: Control, Diarrhea, CBM, and FMT. Diarrhea was induced using oligofructose, and fecal samples were collected for microbiota analysis. FMT and CBM treatments were administered orally using donor fecal matter, and formula mixture, respectively. Clinical parameters, serum levels, intestinal tissue histopathology, and fecal microbiota profiles were evaluated. The results showed that diarrhea induction disbalanced the gut microbiota with decreased diversity and richness, affected clinical parameters including elevated body temperature and diarrhea score, and decreased fecal pH, increased inflammatory responses such as increased serum LPS, IL-17A, lactic acid and total protein, and caused damage in the colon tissue. CBM and FMT treatments altered the gut microbiota composition, restoring it towards a healthier profile compared to diarrheic, restored the gut microbiota composition to healthier states, improved clinical symptoms including decreased body temperature and diarrhea score, and increased fecal pH, decreased inflammatory responses such as increased serum LPS, IL-17A, lactic acid and total protein, and repaired tissue damage. CBM and FMT Spearman correlation analysis identified specific bacterial taxa associated with host parameters and inflammation. FMT and CBM treatments showed promising therapeutic effects in managing oligofructose-induced diarrhea in horses. The findings provide valuable insights into the management and treatment of diarrhea in horses and suggest the potential of combined CBM and FMT approaches for optimal therapeutic outcomes.

9.
Immunity ; 57(5): 1056-1070.e5, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38614091

RESUMO

A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEß7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.


Assuntos
Interleucina-33 , Mastócitos , Proteínas de Ligação a Fosfato , Mastócitos/imunologia , Mastócitos/metabolismo , Animais , Interleucina-33/metabolismo , Interleucina-33/imunologia , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Comunicação Celular/imunologia
10.
Bioprocess Biosyst Eng ; 47(6): 851-862, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676738

RESUMO

In this paper, a magnetic sequencing batch reactor (SBR) was constructed, and the influence rule of magnetic particle dosing performance of denitrification was investigated. The diversity, structure, and potential functions of the microbial community were comprehensively explored. The results showed that the particle size and the dosage of Fe3O4 magnetic particles were the main parameters affecting the sedimentation performance of activated sludge. The start-up phase of the SBR reactor with Fe3O4 magnetic particles was 5 days less than the control. Moreover, total nitrogen removal efficiency during the start-up phase was improved, with the maximum value reaching 91.93%, surpassing the control by 9.7% with the Fe3O4 dosage of 1.2 g L-1. In addition, the activated sludge concentration and dehydrogenase activity were improved, compared to the control. High-throughput sequencing showed that the denitrifying bacterium Saccharimonadales dominated the reactor and was enriched by magnetic particles. According to predicted functions, the abundance of genes for denitrification increased with the addition of magnetic particles, suggesting the capacity of nitrogen removal was enhanced in the microbial community. Overall, the Fe3O4 magnetic particles provide great potential for enhanced wastewater nitrogen removal.


Assuntos
Reatores Biológicos , Desnitrificação , Nitrogênio , Nitrogênio/química , Nitrogênio/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo , Bactérias/genética , Águas Residuárias/microbiologia , Águas Residuárias/química , Nanopartículas de Magnetita/química
11.
Reproduction ; 167(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614129

RESUMO

In brief: The mechanism underlying the accumulation of γδT cells in the decidua, which helps maintain maternal-fetal immunotolerance in early pregnancy, is unknown. This study reveals that DSC-derived RANKL upregulates ICAM-1 expression via the NF-κB pathway to enable γδT cell accumulation in the early decidua. Abstract: Decidual γδT (dγδT) cells help maintain maternal-fetal immunotolerance in early pregnancy. However, the mechanism underlying the accumulation of γδT cells in the decidua is unknown. Previous work showed that RANKL upregulated intercellular adhesion molecule 1 (ICAM-1) in decidual stromal cells (DSCs), and Rankl knockout mice had limited dγδT cell populations. In this study, we measured the expression levels of RANKL/RANK and ICAM-1 in DSCs, in addition to the integrins of ICAM-1 on dγδT cells, and the number of dγδT cells from patients with recurrent spontaneous abortion (RSA) and normal pregnant women in the first trimester. RSA patients showed significantly decreased RANKL/RANK and ICAM-1/CD11a signaling in decidua, and a decreased percentage of dγδT cells, which was positively correlated with DSC-derived RANKL and ICAM-1. Next, an in vitro adhesion experiment showed that the enhanced attraction of human DSCs to dγδT cells after RANKL overexpression was almost completely aborted by anti-ICAM-1. Furthermore, Rankl knockout mice showed a significant reduction in NF-κB activity compared with wild-type controls. Finally, we applied a selective NF-κB inhibitor named PDTC to validate the role of NF-κB in RANKL-mediated ICAM-1 upregulation. Taken together, our data show that DSC-derived RANKL upregulates ICAM-1 expression via the NF-κB pathway to enable γδT cell accumulation in the early decidua. A reduction in RANKL/ICAM-1 signaling in DSCs may result in insufficient accumulation of γδT cells in decidua and, in turn, RSA.


Assuntos
Decídua , Molécula 1 de Adesão Intercelular , NF-kappa B , Ligante RANK , Regulação para Cima , Adulto , Animais , Feminino , Humanos , Camundongos , Gravidez , Decídua/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Camundongos Knockout , NF-kappa B/metabolismo , Ligante RANK/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Linfócitos T/metabolismo
12.
Biochem Pharmacol ; 224: 116220, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641307

RESUMO

Alpha-enolase (ENO1), a multifunctional protein with carcinogenic properties, has emerged as a promising cancer biomarker because of its differential expression in cancer and normal cells. On the basis of this characteristic, we designed a cell-targeting peptide that specifically targets ENO1 and connected it with the drug doxorubicin (DOX) by aldehyde-amine condensation. A surface plasmon resonance (SPR) assay showed that the affinity for ENO1 was stronger (KD = 2.5 µM) for the resulting cell-targeting drug, DOX-P, than for DOX. Moreover, DOX-P exhibited acid-responsive capabilities, enabling precise release at the tumor site under the guidance of the homing peptide and alleviating DOX-induced cardiotoxicity. An efficacy experiment confirmed that, the targeting ability of DOX-P toward ENO1 demonstrated superior antitumor activity against colorectal cancer than that of DOX, while reducing its toxicity to cardiomyocytes. Furthermore, in vivo metabolic distribution results indicated low accumulation of DOX-P in nontumor sites, further validating its targeting ability. These results showed that the ENO1-targeted DOX-P peptide has great potential for application in targeted drug-delivery systems for colorectal cancer therapy.


Assuntos
Antibióticos Antineoplásicos , Neoplasias Colorretais , Doxorrubicina , Sistemas de Liberação de Medicamentos , Fosfopiruvato Hidratase , Proteínas Supressoras de Tumor , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Fosfopiruvato Hidratase/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Animais , Proteínas Supressoras de Tumor/metabolismo , Humanos , Camundongos , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/administração & dosagem , Camundongos Endogâmicos BALB C , Camundongos Nus , Masculino , Linhagem Celular Tumoral , Células HCT116 , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Biomarcadores Tumorais
13.
Environ Sci Pollut Res Int ; 31(22): 32136-32151, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644426

RESUMO

Long-term coal mining could lead to a serious of geo-environmental problems. However, less comprehensive identification of factors controlling the groundwater dynamics were involved in previous studies. This study focused on 68 groundwater samples collected before and after mining activities, Self-Organizing Maps (SOM) combining with Principal Component Analysis (PCA) derived that the groundwater samples were classified into five clusters. Clusters 1-5 (C1-C5) represented the groundwater quality affected by different hydrochemical processes, mainly including mineral (carbonate and evaporite) dissolution and cation exchange, which were controlled by the hydrochemical environment at different stages of mining activities. Combining with the time-series data, the Extreme Gradient Boosting Decision Trees (XGBoost) derived that the mine water inflow (feature relative importance of 40.0%) and unit goaf area (feature relative importance of 29.2%) were dominant factors affecting the confined groundwater level, but had less or lagged impact on phreatic groundwater level. This was closely related to the height of the water flow fractured zone and hydraulic connection between aquifers. The results of this study on the coupled evolution of groundwater dynamics could enhance our understanding of the effects of mining on aquifer systems and contribute to the prevention of water hazards in the coalfields.


Assuntos
Minas de Carvão , Monitoramento Ambiental , Água Subterrânea , Aprendizado de Máquina , Água Subterrânea/química , China , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Análise de Componente Principal
14.
Matrix Biol ; 129: 1-14, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490466

RESUMO

The coordination between odontoblastic differentiation and directed cell migration of mesenchymal progenitors is necessary for regular dentin formation. The synthesis and degradation of hyaluronan (HA) in the extracellular matrix create a permissive niche that directly regulates cell behaviors. However, the role and mechanisms of HA degradation in dentin formation remain unknown. In this work, we present that HA digestion promotes odontoblastic differentiation and cell migration of mouse dental papilla cells (mDPCs). Hyaluronidase 2 (HYAL2) is responsible for promoting odontoblastic differentiation through degrading HA, while hyaluronidase 1 (HYAL1) exhibits negligible effect. Silencing Hyal2 generates an extracellular environment rich in HA, which attenuates F-actin and filopodium formation and in turn inhibits cell migration of mDPCs. In addition, activating PI3K/Akt signaling significantly rescues the effects of HA accumulation on cytodifferentiation. Taken together, the results confirm the contribution of HYAL2 to HA degradation in dentinogenesis and uncover the mechanism of the HYAL2-mediated HA degradation in regulating the odontoblastic differentiation and migration of mDPCs.


Assuntos
Diferenciação Celular , Movimento Celular , Papila Dentária , Ácido Hialurônico , Hialuronoglucosaminidase , Odontoblastos , Animais , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Camundongos , Ácido Hialurônico/metabolismo , Odontoblastos/metabolismo , Odontoblastos/citologia , Papila Dentária/citologia , Papila Dentária/metabolismo , Transdução de Sinais , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Células Cultivadas , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética
15.
Inflammation ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429403

RESUMO

Sepsis is a severe and life-threatening disease caused by infection, characterized by a dysregulated immune response. Unfortunately, effective treatment strategies for sepsis are still lacking. The intricate interplay between metabolism and the immune system limits the treatment options for sepsis. During sepsis, there is a profound shift in cellular energy metabolism, which triggers a metabolic reprogramming of immune cells. This metabolic alteration impairs immune responses, giving rise to excessive inflammation and immune suppression. Recent research has demonstrated that UCP2 not only serves as a critical target in sepsis but also functions as a key metabolic switch involved in immune cell-mediated inflammatory responses. However, the regulatory mechanisms underlying this modulation are complex. This article focuses on UCP2 as a target and discusses metabolic reprogramming during sepsis and the complex regulatory mechanisms between different stages of inflammation. Our research indicates that overexpression of UCP2 reduces the Warburg effect, restores mitochondrial function, and improves the prognosis of sepsis. This discovery aims to provide a promising approach to address the significant challenges associated with metabolic dysfunction and immune paralysis.

16.
Orphanet J Rare Dis ; 19(1): 123, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486238

RESUMO

BACKGROUND: Pathogenic missense variants in the dystrophin (DMD) gene are rarely reported in dystrophinopathies. Most DMD missense variants are of uncertain significance and their pathogenicity interpretation remains complicated. We aimed to investigate whether DMD missense variants would cause aberrant splicing and re-interpret their pathogenicity based on mRNA and protein studies. METHODS: Nine unrelated patients who had an elevated serum creatine kinase level with or without muscle weakness were enrolled. They underwent a detailed clinical, imaging, and pathological assessment. Routine genetic testing and muscle-derived mRNA and protein studies of dystrophin and sarcoglycan genes were performed in them. RESULTS: Three of the 9 patients presented with a Duchenne muscular dystrophy (DMD) phenotype and the remaining 6 patients had a suspected diagnosis of Becker muscular dystrophy (BMD) or sarcoglycanopathy based on their clinical and pathological characteristics. Routine genetic testing detected only 9 predicted DMD missense variants in them, of which 6 were novel and interpreted as uncertain significance. Muscle-derived mRNA studies of sarcoglycan genes didn't reveal any aberrant transcripts in them. Dystrophin mRNA studies confirmed that 3 predicted DMD missense variants (c.2380G > C, c.4977C > G, and c.5444A > G) were in fact splicing and frameshift variants due to aberrant splicing. The 9 DMD variants were re-interpreted as pathogenic or likely pathogenic based on mRNA and protein studies. Therefore, 3 patients with DMD splicing variants and 6 patients with confirmed DMD missense variants were diagnosed with DMD and BMD, respectively. CONCLUSION: Our study highlights the importance of muscle biopsy and aberrant splicing for clinical and genetic interpretation of uncertain DMD missense variants.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Mutação de Sentido Incorreto/genética , RNA Mensageiro/genética , Sarcoglicanas/genética
17.
Angew Chem Int Ed Engl ; 63(27): e202402800, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411404

RESUMO

π-Conjugated chiral nanorings with intriguing electronic structures and chiroptical properties have attracted considerable interests in synthetic chemistry and materials science. We present the design principles to access new chiral macrocycles (1 and 2) that are essentially built on the key components of main-group electron-donating carbazolyl moieties or the π-expanded aza[7]helicenes. Both macrocycles show the unique molecular conformations with a (quasi) figure-of-eight topology as a result of the conjugation patterns of 2,2',7,7'-spirobifluorenyl in 1 and triarylamine-coupled aza[7]helicene-based building blocks in 2. This electronic nature of redox-active, carbazole-rich backbones enabled these macrocycles to be readily oxidized chemically and electrochemically, leading to the sequential production of a series of positively charged polycationic open-shell cyclophanes. Their redox-dependent electronic states of the resulting multispin polyradicals have been characterized by VT-ESR, UV/Vis-NIR absorption and spectroelectrochemical measurements. The singlet (ΔES-T=-1.29 kcal mol-1) and a nearly degenerate singlet-triplet ground state (ΔES-T(calcd)=-0.15 kcal mol-1 and ΔES-T(exp)=0.01 kcal mol-1) were proved for diradical dications 12+2⋅ and 22+2⋅, respectively. Our work provides an experimental proof for the construction of electron-donating new chiral nanorings, and more importantly for highly charged polyradicals with potential applications in chirospintronics and organic conductors.

18.
Plant Cell Rep ; 43(2): 55, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315238

RESUMO

KEY MESSAGE: ABI5 functions in ABA-mediated anthocyanin accumulation in plant response to low phosphate. Low phosphate (LP)-induced anthocyanin biosynthesis and accumulation play an important role in plant adaptive response to phosphate starvation conditions. However, whether and how the stress phytohormone abscisic acid (ABA) participates in LP-induced anthocyanin accumulation remain elusive. Here, we report that ABA is required for LP-induced anthocyanin accumulation in Arabidopsis thaliana. Disrupting ABA DEFICIENT2 (ABA2), a key ABA-biosynthetic gene, or BETA-GLUCOSIDASE1 (BG1), a major gene implicated in converting conjugated ABA to active ABA, significantly impairs LP-induced anthocyanin accumulation, as LP-induced expression of the anthocyanin-biosynthetic genes Chalcone Synthase (CHS) is dampened in the aba2 and bg1 mutant. In addition, LP-induced anthocyanin accumulation is defective in the mutants of ABA signaling pathway, including ABA receptors, ABA Insensitive2, and the transcription factors ABA Insensitive5 (ABI5), suggesting a role of ABI5 in ABA-mediated upregulation of anthocyanin-biosynthetic genes in plant response to LP. Indeed, LP-induced expression of CHS is repressed in the abi5-7 mutant but further promoted in the ABI5-overexpressing plants compared to the wild-type. Moreover, ABI5 can bind to and transcriptionally activate CHS, and the defectiveness of LP-induced anthocyanin accumulation in abi5-7 can be restored by overexpressing CHS. Collectively, our findings illustrates that ABI5 functions in ABA-mediated LP-induced anthocyanin accumulation in Arabidopsis.


Assuntos
Antocianinas , Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Elife ; 122024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407952

RESUMO

Notch-RBP-J signaling plays an essential role in the maintenance of myeloid homeostasis. However, its role in monocyte cell fate decisions is not fully understood. Here, we showed that conditional deletion of transcription factor RBP-J in myeloid cells resulted in marked accumulation of blood Ly6Clo monocytes that highly expressed chemokine receptor CCR2. Bone marrow transplantation and parabiosis experiments revealed a cell-intrinsic requirement of RBP-J for controlling blood Ly6CloCCR2hi monocytes. RBP-J-deficient Ly6Clo monocytes exhibited enhanced capacity competing with wildtype counterparts in blood circulation. In accordance with alterations of circulating monocytes, RBP-J deficiency led to markedly increased population of lung tissues with Ly6Clo monocytes and CD16.2+ interstitial macrophages. Furthermore, RBP-J deficiency-associated phenotypes could be genetically corrected by further deleting Ccr2 in myeloid cells. These results demonstrate that RBP-J functions as a crucial regulator of blood Ly6Clo monocytes and thus derived lung-resident myeloid populations, at least in part through regulation of CCR2.


Assuntos
Monócitos , Células Mieloides , Macrófagos , Transplante de Medula Óssea , Homeostase , Receptores de Quimiocinas
20.
Nat Struct Mol Biol ; 31(6): 950-963, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243114

RESUMO

During the first lineage segregation, a mammalian totipotent embryo differentiates into the inner cell mass (ICM) and trophectoderm (TE). However, how transcription factors (TFs) regulate this earliest cell-fate decision in vivo remains elusive, with their regulomes primarily inferred from cultured cells. Here, we investigated the TF regulomes during the first lineage specification in early mouse embryos, spanning the pre-initiation, initiation, commitment, and maintenance phases. Unexpectedly, we found that TFAP2C, a trophoblast regulator, bound and activated both early TE and inner cell mass (ICM) genes at the totipotent (two- to eight-cell) stages ('bipotency activation'). Tfap2c deficiency caused downregulation of early ICM genes, including Nanog, Nr5a2, and Tdgf1, and early TE genes, including Tfeb and Itgb5, in eight-cell embryos. Transcription defects in both ICM and TE lineages were also found in blastocysts, accompanied by increased apoptosis and reduced cell numbers in ICMs. Upon trophoblast commitment, TFAP2C left early ICM genes but acquired binding to late TE genes in blastocysts, where it co-bound with CDX2, and later to extra-embryonic ectoderm (ExE) genes, where it cooperatively co-occupied with the former ICM regulator SOX2. Finally, 'bipotency activation' in totipotent embryos also applied to a pluripotency regulator NR5A2, which similarly bound and activated both ICM and TE lineage genes at the eight-cell stage. These data reveal a unique transcription circuity of totipotency underpinned by highly adaptable lineage regulators.


Assuntos
Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição AP-2 , Animais , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Camundongos , Feminino , Embrião de Mamíferos/metabolismo , Trofoblastos/metabolismo , Trofoblastos/citologia , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Desenvolvimento Embrionário/genética , Diferenciação Celular , Receptores Citoplasmáticos e Nucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...