Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 860: 160493, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36435239

RESUMO

Despite the tremendous contribution of irrigated agriculture in addressing global food security, there is still confusion for farmers and governments about the choice of irrigation mode owing to the drastic environmental impacts of irrigation, including water shortage, energy crisis, and global warming. Exploring the agricultural water-energy­carbon (WEC) nexus under different irrigation modes helps to accomplish the multi-objective of water & energy saving and carbon emission reduction. In this paper, a conceptual framework was nominated to evaluate the water & energy consumption and carbon emissions for winter wheat irrigation at township level and quantitatively discuss the complex interaction by the coupling coordination degree (CCD) of the WEC system under different irrigation modes in Henan Province, China. We discovered that irrigation modes profoundly affect water and energy consumption and carbon emissions in agriculture, as well as the spatial distribution of CCD from WEC system. Townships under irrigation mode with diversion and irrigation projects as the primary method (WDI) clustered together in the north and east with highest water consumption and carbon emissions, while townships under irrigation mode with rain-fed agriculture as the primary method (PI) accumulated in the west and south with lower water consumption and carbon emissions. Meanwhile, the CCD of the WEC nexus system was in basic coordination (0.40) and showed an unbalanced spatial distribution pattern with high in the southeast and low in the northwest. By comparing four irrigation modes, the coupling level of the WEC nexus system under irrigation mode with groundwater irrigation as the primary method (GI) was better and PI mode was the least ideal. This study helps to further understand agricultural WEC nexus under different irrigation modes and provide references for local governments in selecting appropriate irrigation modes to realize water-energy saving and carbon emission reduction in agricultural activities.


Assuntos
Irrigação Agrícola , Água , Irrigação Agrícola/métodos , Água/análise , Carbono , Agricultura/métodos , Aquecimento Global , China
2.
Protein Pept Lett ; 24(3): 235-240, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28124609

RESUMO

Scorpion venom contains a large variety of biologically active peptides. However, most of these peptides have not been identified and characterized. Peptides with three disulfide bridges, existing in the scorpion venom, have not been studied in detail and have been poorly characterized until now. Here, we report the recombinant expression and functional characterization of two kinds of venom peptides (BmKBTx and BmNaL-3SS2) with three disulfide bridges. This study adopted an effective Escherichia coli system. The genes for BmKBTx and BmNaL-3SS2 were obtained by polymerase chain reaction and cloned to the pSYPU-1b vector. After expression and purification, the two recombinant proteins were subjected to an analgesic activity assay in mice and whole-cell patchclamp recording of hNav1.7-CHO cell lines. Functional tests showed that BmKBTx and BmNaL- 3SS2 have analgesic activity in mice and can interact with the hNav1.7 subtype of the voltage-gated sodium channel (VGSC). Scorpion venom is rich in bioactive proteins, but most of their functions are unknown to us. This study has increased our knowledge of these novel disulfide-bridged peptides (DBPs) and their biological activities.


Assuntos
Analgésicos/química , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Venenos de Escorpião/química , Potenciais de Ação/efeitos dos fármacos , Sequência de Aminoácidos , Analgésicos/isolamento & purificação , Analgésicos/metabolismo , Analgésicos/farmacologia , Animais , Células CHO , China , Clonagem Molecular , Cricetulus , Dissulfetos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Técnicas de Patch-Clamp , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Venenos de Escorpião/genética , Venenos de Escorpião/isolamento & purificação , Venenos de Escorpião/metabolismo , Venenos de Escorpião/farmacologia , Escorpiões/química , Escorpiões/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
3.
Polymers (Basel) ; 9(12)2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30965997

RESUMO

The differences in micro-environment between cancer cells and the normal ones offer the possibility to develop stimuli-responsive drug-delivery systems for overcoming the drawbacks in the clinical use of anticancer drugs, such as paclitaxel, doxorubicin, and etc. Hence, we developed a novel endosomal pH-sensitive paclitaxel (PTX) prodrug micelles based on functionalized poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) diblock polymer with an acid-cleavable acetal (Ace) linkage (mPEG-PCL-Ace-PTX). The mPEG-PCL-Ace-PTX5 with a high drug content of 23.5 wt % was self-assembled in phosphate buffer (pH 7.4, 10 mM) into nanosized micelles with an average diameter of 68.5 nm. The in vitro release studies demonstrated that mPEG-PCL-Ace-PTX5 micelles was highly pH-sensitive, in which 16.8%, 32.8%, and 48.2% of parent free PTX was released from mPEG-PCL-Ace-PTX5 micelles in 48 h at pH 7.4, 6.0, and 5.0, respectively. Thiazolyl Blue Tetrazolium Bromide (MTT) assays suggested that the pH-sensitive PTX prodrug micelles displayed higher therapeutic efficacy against MCF-7 cells compared with free PTX. Therefore, the PTX prodrug micelles with acetal bond may offer a promising strategy for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...