Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122668, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001262

RESUMO

Apple fruit damages seriously cause product and economic losses, infringe consumer rights and interests, and have harmful effects on human and livestock health. In this study, Raman spectroscopy (RS) and cascade forest (CForest) were adopted to determine apple fruit damages. First, the RS spectra of healthy, bruised, Rhizopus-infected, and Botrytis-infected apples were measured. Spectral changes and band attribution were analyzed. Different modeling methods were combined with various pre-processing and dimension reduction methods to construct recognition models. Among all models, CForest constructed with full spectra processed by Savitsky-Golay smoothing obtained the best performance with accuracies of 100%, 91.96%, and 92.80% in the training, validation, and test sets (ACCTE). And the modeling time is reduced to 1/3 of the full-spectra model with a similar ACCTE of 91.56% after principal component analysis. Overall, RS and CForest provided a non-destructive, rapid, and accurate identification of apple fruit damages and could be used in disease recognition and safety assurance of other fruits.


Assuntos
Frutas , Malus , Humanos , Frutas/química , Malus/química , Análise Espectral Raman/métodos , Análise de Componente Principal
2.
Foods ; 11(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35206055

RESUMO

Detection of infected kernels is important for Fusarium head blight (FHB) prevention and product quality assurance in wheat. In this study, Raman spectroscopy (RS) and deep learning networks were used for the determination of FHB-infected wheat kernels. First, the RS spectra of healthy, mild, and severe infection kernels were measured and spectral changes and band attribution were analyzed. Then, the Inception network was improved by residual and channel attention modules to develop the recognition models of FHB infection. The Inception-attention network produced the best determination with accuracies in training set, validation set, and prediction set of 97.13%, 91.49%, and 93.62%, among all models. The average feature map of the channel clarified the important information in feature extraction, itself required to clarify the decision-making strategy. Overall, RS and the Inception-attention network provide a noninvasive, rapid, and accurate determination of FHB-infected wheat kernels and are expected to be applied to other pathogens or diseases in various crops.

3.
Food Chem ; 359: 129847, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33964656

RESUMO

Surface-enhanced Raman spectroscopy (SERS) and deep learning network were adopted to develop a detection method for deoxynivalenol (DON) residues in Fusarium head blight (FHB)-infected wheat kernels. First, the liquid-liquid interface self-extraction was conducted for the rapid separation of DON in samples. Then, the gold nanorods modified with sodium citrate (Cit-AuNRs) were prepared as substrate for a gigantic enhancement of SERS signal. Results showed that the spectral characteristic peaks for DON residues of 99.5-0.5 mg/L were discernible with the relative standard deviation of 4.2%, with the limit of detection of 0.11 mg/L. Meanwhile, the fully convolutional network for the spectra of matrix input form was developed and obtained the optimal quantitative performance, with a root-mean-square error of prediction of 4.41 mg/L and coefficient of determination of prediction of 0.9827. Thus, the proposed method provides a simple, sensitive, and intelligent detection for DON in FHB-infected wheat kernels.


Assuntos
Fusarium/fisiologia , Ouro/química , Nanotubos/química , Citrato de Sódio/química , Análise Espectral Raman/métodos , Tricotecenos/análise , Triticum/química , Extração Líquido-Líquido , Doenças das Plantas/microbiologia , Tricotecenos/isolamento & purificação , Triticum/microbiologia
4.
J Agric Food Chem ; 69(10): 2950-2964, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33677962

RESUMO

Plant diseases result in 20-40% of agricultural loss every year worldwide. Timely detection of plant diseases can effectively prevent the development and spread of diseases and ensure the agricultural yield. High-throughput and rapid methods are in great demand. This review investigates the advanced application of Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy (SERS) in the detection of plant diseases. The determination of bacterial diseases and stress-induced diseases, fungal diseases, viral diseases, pests in beans, and mycotoxins related to plant diseases using RS and SERS are discussed in detail. Then, biomarkers for RS and SERS detection are analyzed with regard to plant disease diagnosis. Finally, the advantages and challenges are further illustrated. Additionally, potential alternatives are proposed for the challenges. The review is expected to provide a reference and guidance for the use of RS and SERS in plant disease diagnostics.


Assuntos
Doenças das Plantas , Análise Espectral Raman
5.
Animals (Basel) ; 10(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526858

RESUMO

Quail is raised throughout China for egg and meat production. To deeply understand the gastrointestinal microbial composition and metabolites of quail, the present study characterized the microbiota inhabiting five intestinal locations of eight-week-old quail using 16S rRNA gene sequencing and qPCR, and evaluated the concentrations of short-chain fatty acids (SCFAs) in each individual location using gas chromatography. The results showed that Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Deferribacteres were the five most abundant phyla in the intestinal tract of quail. Firmicutes was largely dominant (>95%) in the small intestine, whereas Bacteroidetes increased significantly in the cecum (19.19%) and colorectum (8.09%). At the genus level, Lactobacillus was predominant in almost all sections (>50%) except in the cecum (7.26%), where Megamonas, Faecalibacterium, and Bacteroides were dominant. qPCR data indicated that the population sizes of both the total bacteria and proportions of the Firmicutes, Bacteroidetes, and Bacteroides group increased going from the proximal toward the distal end of the intestine in quail. The SCFA-producing bacterial genera Bacteroides, Faecalibacterium, Alistipes, Blautia, Parabacteroides, and Clostridium were of higher richness in the cecum and colorectum, where, accordingly, more SCFAs were produced. These findings will be helpful for the future study of quail microbiology, as well as its relationship with productive performance and health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...