Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Cent J ; 11(1): 116, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150749

RESUMO

The interaction of paeoniflorin with human serum albumin (HSA) was investigated using fluorescence, UV-vis absorption, circular dichroism (CD) spectra and molecular docking techniques under simulative physiological conditions. The results clarified that the fluorescence quenching of HSA by paeoniflorin was a static quenching process and energy transfer as a result of a newly formed complex (1:1). Paeoniflorin spontaneously bound to HSA in site I (subdomain IIA), which was primarily driven by hydrophobic forces and hydrogen bonds (ΔH° = - 9.98 kJ mol-1, ΔS° = 28.18 J mol-1 K-1). The binding constant was calculated to be 1.909 × 103 L mol-1 at 288 K and it decreased with the increase of the temperature. The binding distance was estimated to be 1.74 nm at 288 K, showing the occurrence of fluorescence energy transfer. The results of CD and three-dimensional fluorescence spectra showed that paeoniflorin induced the conformational changes of HSA. Meanwhile, the study of molecular docking also indicated that paeoniflorin could bind to the site I of HSA mainly by hydrophobic and hydrogen bond interactions.

2.
J Photochem Photobiol B ; 173: 187-195, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28595073

RESUMO

Cytarabine is a kind of chemotherapy medication. In the present study, the molecular interaction between cytarabine and human serum albumin (HSA) was investigated via fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy and molecular docking method under simulative physiological conditions. It was found that cytarabine could effectively quench the intrinsic fluorescence of HSA through a static quenching process. The apparent binding constants between drug and HSA at 288, 293 and 298K were estimated to be in the order of 103L·mol-1. The thermodynamic parameters ΔH°, ΔG°and ΔS° were calculated, in which the negative ΔG°suggested that the binding of cytarabine to HSA was spontaneous, moreover the negative ΔS°and negative ΔH°revealed that van der Waals force and hydrogen bonds were the major forces to stabilize the protein-cytarabine (1:1) complex. The competitive binding experiments showed that the primary binding site of cytarabine was located in the site I (subdomain IIA) of HSA. In addition, the binding distance was calculated to be 3.4nm according to the Förster no-radiation energy transfer theory. The analysis of CD and three-dimensional (3D) fluorescence spectra demonstrated that the binding of drug to HSA induced some conformational changes in HSA. The molecular docking study also led to the same conclusion obtained from the spectral results.


Assuntos
Citarabina/metabolismo , Albumina Sérica/metabolismo , Sítios de Ligação , Dicroísmo Circular , Citarabina/química , Transferência de Energia , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Albumina Sérica/química , Espectrometria de Fluorescência , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...