Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Biochem Pharmacol ; 226: 116377, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906228

RESUMO

BTB and CNC homology 1 (BACH1) regulates biological processes, including energy metabolism and oxidative stress. Insufficient liver regeneration after hepatectomy remains an issue for surgeons. The Pringle maneuver is widely used during hepatectomy and induces ischemia/reperfusion (I/R) injury in hepatocytes. A rat model of two-thirds partial hepatectomy with repeated I/R treatment was used to simulate clinical hepatectomy with Pringle maneuver. Delayed recovery of liver function after hepatectomy with the repeated Pringle maneuver in clinic and impaired liver regeneration in rat model were observed. Highly elevated lactate levels, along with reduced mitochondrial complex III and IV activities in liver tissues, indicated that the glycolytic phenotype was promoted after hepatectomy with repeated I/R. mRNA expression profile analysis of glycolysis-related genes in clinical samples and further verification experiments in rat models showed that high BACH1 expression levels correlated with the glycolytic phenotype after hepatectomy with repeated I/R. BACH1 overexpression restricted the proliferative potential of hepatocytes stimulated with HGF. High PDK1 expression and high lactate levels, together with low mitochondrial complex III and IV activities and reduced ATP concentrations, were detected in BACH1-overexpressing hepatocytes with HGF stimulation. Moreover, HO-1 expression was downregulated, and oxidative stress was exacerbated in the BACH1-overexpressing hepatocytes with HGF stimulation. Cell experiments involving repeated hypoxia/reoxygenation revealed that reactive oxygen species accumulation triggered the TGF-ß1/BACH1 axis in hepatocytes. Finally, inhibiting BACH1 with the inhibitor hemin effectively restored the liver regenerative ability after hepatectomy with repeated I/R. These results provide a potential therapeutic strategy for impaired liver regeneration after repeated I/R injury.

2.
J Nanobiotechnology ; 22(1): 99, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461229

RESUMO

The Influenza A virus (IAV) is a zoonotic pathogen that infects humans and various animal species. Infection with IAV can cause fever, anorexia, and dyspnea and is often accompanied by pneumonia characterized by an excessive release of cytokines (i.e., cytokine storm). Nanodrug delivery systems and nanoparticles are a novel approach to address IAV infections. Herein, UiO-66 nanoparticles (NPs) are synthesized using a high-temperature melting reaction. The in vitro and in vivo optimal concentrations of UiO-66 NPs for antiviral activity are 200 µg mL-1 and 60 mg kg-1, respectively. Transcriptome analysis revealed that UiO-66 NPs can activate the RIG-I-like receptor signaling pathway, thereby enhancing the downstream type I interferon antiviral effect. These NPs suppress inflammation-related pathways, including the FOXO, HIF, and AMPK signaling pathways. The inhibitory effect of UiO-66 NPs on the adsorption and entry of IAV into A549 cells is significant. This study presents novel findings that demonstrate the effective inhibition of IAV adsorption and entry into cells via UiO-66 NPs and highlights their ability to activate the cellular RIG-I-like receptor signaling pathway, thereby exerting an anti-IAV effect in vitro or in mice. These results provide valuable insights into the mechanism of action of UiO-66 NPs against IAV and substantial data for advancing innovative antiviral nanomedicine.


Assuntos
Vírus da Influenza A , Influenza Humana , Estruturas Metalorgânicas , Infecções por Orthomyxoviridae , Ácidos Ftálicos , Camundongos , Humanos , Animais , Infecções por Orthomyxoviridae/tratamento farmacológico , Transdução de Sinais , Antivirais/farmacologia , Antivirais/uso terapêutico
5.
PLoS Pathog ; 19(5): e1011406, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200384

RESUMO

Influenza A virus (IAV) H1N1 infection is a constant threat to human health and it remains so due to the lack of an effective treatment. Since melatonin is a potent antioxidant and anti-inflammatory molecule with anti-viral action, in the present study we used melatonin to protect against H1N1 infection under in vitro and in vivo conditions. The death rate of the H1N1-infected mice was negatively associated with the nose and lung tissue local melatonin levels but not with serum melatonin concentrations. The H1N1-infected AANAT-/- melatonin-deficient mice had a significantly higher death rate than that of the WT mice and melatonin administration significantly reduced the death rate. All evidence confirmed the protective effects of melatonin against H1N1 infection. Further study identified that the mast cells were the primary targets of melatonin action, i.e., melatonin suppresses the mast cell activation caused by H1N1 infection. The molecular mechanisms involved melatonin down-regulation of gene expression for the HIF-1 pathway and inhibition of proinflammatory cytokine release from mast cells; this resulted in a reduction in the migration and activation of the macrophages and neutrophils in the lung tissue. This pathway was mediated by melatonin receptor 2 (MT2) since the MT2 specific antagonist 4P-PDOT significantly blocked the effects of melatonin on mast cell activation. Via targeting mast cells, melatonin suppressed apoptosis of alveolar epithelial cells and the lung injury caused by H1N1 infection. The findings provide a novel mechanism to protect against the H1N1-induced pulmonary injury, which may better facilitate the progress of new strategies to fight H1N1 infection or other IAV viral infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Lesão Pulmonar , Melatonina , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Mastócitos/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Pulmão
6.
J Virol ; 97(3): e0168922, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916907

RESUMO

Fast evolution in the field of the replicase nsp2 represents a most prominent feature of porcine reproductive and respiratory syndrome virus (PRRSV). Here, we determined its biological significance in viral pathogenesis by constructing interlineage chimeric mutants between the Chinese highly pathogenic PRRSV (HP-PRRSV) strain JXwn06 (lineage 8) and the low-virulent NADC30-like strain CHsx1401 (lineage 1). Replacement with nsp2 from JXwn06 was surprisingly lethal to the backbone virus CHsx1401, but combined substitution with the structural protein-coding region (SP) gave rise to viable virus CHsx1401-SPnsp2JX. Meanwhile, a derivative carrying only the SP region (CHsx1401-SPJX) served as a control. Subsequent animal experiments revealed that acquisition of SP alone (CHsx1401-SPJX) did not allow CHsx1401 to gain much virulence, but additional swapping of HP-PRRSV nsp2 (CHsx1401-SPnsp2JX) enabled CHsx1401 to acquire some properties of HP-PRRSV, exemplified by prolonged high fever, microscopic lung hemorrhage, and a significant increase in proinflammatory cytokines in the acute stage. Consistent with this was the transcriptomic analysis of persistently infected secondary lymphoid tissues that revealed a much stronger induction of host cellular immune responses in this group and identified several core immune genes (e.g., TLR4, IL-1ß, MPO, etc.) regulated by HP-PRRSV nsp2. Interestingly, immune activation status in the individual groups correlated well with the rate of viremia clearance and viral tissue load reduction. Overall, the above results suggest that the Chinese HP-PRRSV nsp2 is a critical virulence regulator and highlight the importance of nsp2 genetic variation in modulating PRRSV virulence and persistence via immune modulation. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) has been a major threat to the world swine industry. In the field, rapid genetic variations (e.g., deletion, mutation, recombination, etc.) within the nsp2 region present an intriguing conundrum to PRRSV biology and pathogenesis. By making chimeric mutants, here, we show that the Chinese highly pathogenic PRRSV (HP-PRRSV) nsp2 is a virulence factor and a much stronger inducer of host immune responses (e.g., inflammation) than its counterpart, currently epidemic, NADC30-like strains. Differences in the ability to modulate host immunity provide insight into the mechanisms of why NADC30-like strains and their derivatives are rising to be the dominant viruses, whereas the Chinese HP-PRRSV strains gradually give away center stage in the field. Our results have important implications in understanding PRRSV evolution, interlineage recombination, and persistence.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , China/epidemiologia , Citocinas , Variação Genética , Genoma Viral , Filogenia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Virulência/genética
7.
Antiviral Res ; 209: 105502, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549394

RESUMO

Influenza A virus infection causes considerable morbidity and mortality each year globally, and secondary bacterial infection further exacerbates the severity and fatality of the initial viral infection. Mast cells have substantial roles in protecting the respiratory tract mucosa, while their role in viral and bacterial co-infection remains unclear. The present study revealed that secondary Staphylococcus aureus infection significantly aggravated the activation of mast cells during the initial H1N1 infection both in vivo and in vitro, which was closely related to the increased inflammatory lung injury and mortality. Meanwhile, the secondary S. aureus infection suppressed autophagy and promoted inflammatory mediators released by mast cells through activating the PI3K/Akt signaling pathway. Blocking PI3K/Akt pathway by LY294002, an inhibitor of Akt phosphorylation, could rescue autophagy and inhibit the release of inflammatory mediators. Furthermore, based on the influenza A viral and secondary bacterial infected mice model, we showed that the combination of LY294002 and antiviral drug oseltamivir could effectively reduce the inflammatory damage and pro-inflammatory cytokines releasing in lungs, recovering body weight loss and improving the survival rate from the co-infections. In conclusion, secondary bacterial infection can inhibit autophagy and stimulate mast cell activation through the PI3K/Akt pathway, which might explain why secondary bacterial infection would cause severe and fatal consequences following an initial influenza A viral infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Lesão Pulmonar , Infecções por Orthomyxoviridae , Infecções Estafilocócicas , Animais , Camundongos , Humanos , Vírus da Influenza A/metabolismo , Staphylococcus aureus , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/metabolismo , Mastócitos/metabolismo , Pulmão , Autofagia , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/tratamento farmacológico , Mediadores da Inflamação/farmacologia , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/tratamento farmacológico
8.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430673

RESUMO

Intestinal homeostasis is maintained through the interplay of the intestinal mucosa, local and systemic immune factors, and the microbial content of the gut. Iron is a trace mineral in most organisms, including humans, which is essential for growth, systemic metabolism and immune response. Paradoxically, excessive iron intake and/or high iron status can be detrimental to iron metabolism in the intestine and lead to iron overload and ferroptosis-programmed cell death mediated by iron-dependent lipid peroxidation within cell membranes, which contributes to several intestinal diseases. In this review, we comprehensively review recent findings on the impacts of iron overload and ferroptosis on intestinal mucosal homeostasis and inflammation and then present the progress of iron overload and ferroptosis-targeting therapy in intestinal diseases. Understanding the involved mechanisms can provide a new understanding of intestinal disease pathogenesis and facilitate advanced preventive and therapeutic strategies for intestinal dysfunction and diseases.


Assuntos
Ferroptose , Sobrecarga de Ferro , Humanos , Homeostase , Inflamação , Ferro/metabolismo , Mucosa Intestinal/metabolismo
9.
Front Immunol ; 13: 928865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016957

RESUMO

The aim of this study was to evaluate the effects of different selenium (Se) sources on the immune responses and gut microbiota of laying hens challenged with Salmonella enteritidis (S. Enteritidis). A total of 240 45-week-old layers were randomly divided into eight groups with six replicates per group according to a 4 × 2 factorial design, including a blank diet without Se supplementation (CON group) and three diets with 0.3 mg/kg Se supplementation from sodium selenite (IS group), yeast Se (YS group), and selenium-enriched yeast culture (SYC group), respectively. After 8 weeks of feeding, half of them were orally challenged with 1.0 ml suspension of 109 colony-forming units per milliliter of S. Enteritidis daily for 3 days. The serum was collected on days 3, 7, and 14, and the cecum content was collected on day 14 after challenge. There was no significant difference in laying performance among the eight groups before challenge. The S. Enteritidis challenge significantly decreased the laying performance, egg quality, GSH-Px, IgG, and IgM and increased the ratio of feed and egg, malondialdehyde (MDA), Salmonella-specific antibody (SA) titers, IL-6, IL-2, IL-1ß, and INF-γ. However, SYC increased the level of GSH-Px and IgG and decreased IL-6, while YS decreased the level of IL-2 and IL-1ß. What is more, Se supplementation decreased the SA titers to varying degrees and reduced the inflammatory cell infiltration in the lamina propria caused by S. Enteritidis infection. In addition, the S. Enteritidis challenge disrupted the intestinal flora balance by reducing the abundance of the genera Clostridium innocuum, Lachnospiraceae, and Bifidobacterium and increasing the genera Butyricimonas and Brachyspira, while Se supplementation increased the gut microbial alpha diversity whether challenged or not. Under the S. Enteritidis challenge condition, the alteration of microbial composition by the administration of different Se sources mainly manifested as IS increased the relative abundance of the genera Lachnospiraceae and Christensenellaceae, YS increased the relative abundance of the genera Megamonas and Sphingomonas, and SYC increased the genera Fusobacterium and Lactococcus. The alteration of gut microbial composition had a close relationship with antioxidant or immune response. To summarize, different Se sources can improve the egg quality of layers challenged by S. Enteritidis that involves elevating the immunity level and regulating the intestinal microbiota.


Assuntos
Microbioma Gastrointestinal , Selênio , Animais , Galinhas , Feminino , Imunidade , Imunoglobulina G , Interleucina-2 , Interleucina-6 , Saccharomyces cerevisiae , Salmonella enteritidis , Selênio/farmacologia
10.
J Fluoresc ; 32(4): 1601-1610, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35587852

RESUMO

Four fluorimetric probes had been developed to rapidly detect 2,4,6-trinitrophenol (TNP). They were designed and synthesized on the basis of 1,3,4-thiadiazole framework combining calculation with experiment. Among them, SK-1 displayed strong blue emission with fluorescence quantum yield as high as 63.6% in solution. Further evaluation demonstrated that SK-1 displays good selectivity and high sensitivity for rapid and visual detection of TNP. It brought significant changes in both colour and fluorescence emission spectrum. The detection limit was as low as 38 nM. Quenching mechanism was confirmed as photo-induced electron transfer (PET) by nuclear magnetic titration and DFT calculations. What's more, application in real water samples and solid phase paper tests illustrated the practical significance of detection of TNP in both vapor and solution.


Assuntos
Espectrometria de Fluorescência , Teoria da Densidade Funcional , Picratos , Tiadiazóis
11.
Viruses ; 14(2)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35215885

RESUMO

Mast cells, widely residing in connective tissues and on mucosal surfaces, play significant roles in battling against influenza A viruses. To gain further insights into the host cellular responses of mouse mast cells with influenza A virus infection, such as the highly pathogenic avian influenza A virus H5N1 and the human pandemic influenza A H1N1, we employed high-throughput RNA sequencing to identify differentially expressed genes (DEGs) and related signaling pathways. Our data revealed that H1N1-infected mouse mast P815 cells presented more up- and down-regulated genes compared with H5N1-infected cells. Gene ontology analysis showed that the up-regulated genes in H1N1 infection were enriched for more degranulation-related cellular component terms and immune recognition-related molecular functions terms, while the up-regulated genes in H5N1 infection were enriched for more immune-response-related biological processes. Network enrichment of the KEGG pathway analysis showed that DEGs in H1N1 infection were specifically enriched for the FoxO and autophagy pathways. In contrast, DEGs in H5N1 infection were specifically enriched for the NF-κB and necroptosis pathways. Interestingly, we found that Nbeal2 could be preferentially activated in H5N1-infected P815 cells, where the level of Nbeal2 increased dramatically but decreased in HIN1-infected P815 cells. Nbeal2 knockdown facilitated inflammatory cytokine release in both H1N1- and H5N1-infected P815 cells and aggravated the apoptosis of pulmonary epithelial cells. In summary, our data described a transcriptomic profile and bioinformatic characterization of H1N-1 or H5N1-infected mast cells and, for the first time, established the crucial role of Nbeal2 during influenza A virus infection.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/fisiologia , Mastócitos/metabolismo , Transcriptoma , Células A549 , Animais , Apoptose , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Inflamação , Mastócitos/virologia , Camundongos
12.
Front Immunol ; 12: 750808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917075

RESUMO

Endometrial immune response is highly associated with the homeostatic balance of the uterus and embryo development; however, the underlying molecular regulatory mechanisms are not fully elucidated. Herein, the porcine endometrium showed significant variation in mucosal immunity in proliferative and secretory phases by single-cell RNA sequencing. The loose arrangement and high motility of the uterine epithelium in the proliferative phase gave opportunities for epithelial cells and dendritic cells to cross talk with colonizing microbial community, guiding lymphocyte migration into the mucosal and glandular epithelium. The migrating lymphocytes were primarily NK and CD8+ T cells, which were robustly modulated by the chemokine signaling. In the secretory phase, the significantly strengthened mechanical mucosal barrier and increased immunoglobulin A alleviated the migration of lymphocytes into the epithelium when the neuro-modulation, mineral uptake, and amino acid metabolism were strongly upregulated. The noticeably increased intraepithelial lymphocytes were positively modulated by the bacteria in the uterine cavity. Our findings illustrated that significant mucosal immunity variation in the endometrium in the proliferative and secretory phases was closely related to intraepithelial lymphocyte migration, which could be modulated by the colonizing bacteria after cross talk with epithelial cells with higher expressions of chemokine.


Assuntos
Endométrio/imunologia , Endométrio/microbiologia , Ciclo Estral/imunologia , Imunidade nas Mucosas/fisiologia , Microbiota/imunologia , Animais , Feminino , Mucosa/imunologia , Mucosa/microbiologia , Suínos
13.
Artigo em Inglês | MEDLINE | ID: mdl-34886356

RESUMO

Non-ferrous metal smelting is a significant source of anthropogenic heavy metal emission and has led to severe environmental pollution that ultimately threatens the health of local residents. In this study, we determined concentrations of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), as well as Pb isotopic compositions in rice, vegetables and human hair in areas surrounding the Zhuzhou Pb/Zn smelter in Hunan, China and we assessed the health risks associated with rice and vegetable consumption for local residents. Results showed that rice and vegetable samples were significantly contaminated by Cd and Pb. Age and source of rice were important factors for the enrichment of heavy metal concentrations in human hair. The ratios of Pb isotopes in human hair (1.164-1.170 for 206Pb/207Pb and 2.102-2.110 for208Pb/206Pb) were comparable to those in rice (1.162-1.172 for 206Pb/207Pb and 2.098-2.114 for208Pb/206Pb) and were slightly lower than those in vegetables (1.168-1.172 for 206Pb/207Pb and 2.109-2.111 for208Pb/206Pb), indicating that Pb in human hair mainly originated from food ingestion. A non-carcinogenic risk assessment showed that Cd exposure was the dominant health risk for local residents. This study suggested that crops planted surrounding the smelter were seriously contaminated with Cd and human exposure was related to dietary intake.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , China , Produtos Agrícolas , Monitoramento Ambiental , Humanos , Chumbo , Metais Pesados/análise , Medição de Risco , Poluentes do Solo/análise , Verduras , Zinco/análise
14.
Front Vet Sci ; 8: 738558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708102

RESUMO

Avibacterium paragallinarum, the pathogen of infectious coryza, caused a highly contagious respiratory disease that poses a serious threat to chickens. Hence, it is necessary to do diagnostic screening for Av. paragallinarum. Existing technologies have been used for Av. paragallinarum testing, which, however, have some drawbacks such as time consuming and expensive that require well-trained personnel and sophisticated infrastructure, especially when they are limitedly feasible in some places for lack of resources. Nucleic acid hybridization-based lateral flow assay (LFA) is capable of dealing with these drawbacks, which is attributed to the advantages, such low cost, rapid, and simple. However, nucleic acid determination of Av. paragallinarum through LFA method has not been reported so far. In this study, we developed a novel LFA method that employed gold nanoparticle probes to detect amplified Av. paragallinarum dsDNA. Compared with agarose gel electrophoresis, this LFA strip was inexpensive, simple- to- use, and time- saving, which displayed the visual results within 5-8 min. This LFA strip had higher sensitivity that achieved the detection limit of 101 CFU/ml compared with 102 CFU/ml in agarose gel electrophoresis. Besides, great sensitivity was also shown in the LFA strip, and no cross reaction existed for other bacteria. Furthermore, Av. paragallinarum in clinical chickens with infectious coryza were perfectly detected by our established LFA strip. Our study is the first to develop the LFA integrated with amplification and sample preparation techniques for better nucleic acid detection of Av. paragallinarum, which holds great potential for rapid, accurate, and on-site determination methods for early diagnosis of Av. paragallinarum to control further spreading.

15.
Arch Virol ; 166(8): 2151-2158, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34014386

RESUMO

Influenza A virus (IAV) can cause high morbidity and mortality globally every year. Myriad host kinases and their related signaling pathways are involved in IAV infection, and the important role of the c-Jun N-terminal kinase signaling pathway during infection has been demonstrated. SP600125, an inhibitor of c-Jun N-terminal kinase, was found in our previous study to suppress IAV replication in vitro. In this study, we established a mouse model of H1N1 IAV infection and treated the mice with SP600125 to study its protective effect. The results showed that SP600125 treatment reduced the pulmonary inflammatory response, lung injury, and pulmonary viral load and increased the survival rate of H1N1-infected mice. Our data confirm the crucial role of c-Jun N terminal kinase in H1N1 virus replication and inflammatory responses in vivo. Hence, we speculate that SP600125 has a potential antiviral therapeutic benefit against IAV infection.


Assuntos
Antracenos/administração & dosagem , Vírus da Influenza A Subtipo H1N1/fisiologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Antracenos/farmacologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/virologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Distribuição Aleatória , Resultado do Tratamento , Replicação Viral/efeitos dos fármacos
16.
Front Microbiol ; 12: 610196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746913

RESUMO

Avibacterium paragallinarum is the pathogen of infectious coryza, which is a highly contagious respiratory disease of chickens that brings a potentially serious threat to poultry husbandry. Iron is an important nutrient for bacteria and can be obtained from surroundings such as siderophores and hemophores. To date, the mechanisms of iron acquisition and heme utilization as well as detailed regulation in A. paragallinarum have been poorly understood. In this study, we investigated the transcriptomic profiles in detail and the changes of transcriptomes induced by iron restriction in A. paragallinarum using RNA-seq. Compared with the iron-sufficiency control group, many more differentially expressed genes (DEGs) and cellular functions as well as signaling pathways were verified in the iron-restriction group. Among these DEGs, the majority of genes showed decreased expression and some were found to be uniquely present in the iron-restriction group. With an in-depth study of bioinformatic analyses, we demonstrated the crucial roles of the Hut protein and DUF domain-containing proteins, which were preferentially activated in bacteria following iron restriction and contributed to the iron acquisition and heme utilization. Consequently, RT-qPCR results further verified the iron-related DEGs and were consistent with the RNA-seq data. In addition, several novel sRNAs were present in A. paragallinarum and had potential regulatory roles in iron homeostasis, especially in the regulation of Fic protein to ensure stable expression. This is the first report of the molecular mechanism of iron acquisition and heme utilization in A. paragallinarum from the perspective of transcriptomic profiles. The study will contribute to a better understanding of the transcriptomic response of A. paragallinarum to iron starvation and also provide novel insight into the development of new antigens for potential vaccines against infectious coryza by focusing on these iron-related genes.

17.
J Virol ; 95(11)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33727330

RESUMO

The furin cleavage site plays an important role in virus pathogenicity. The spike protein of SARS-CoV-2 harbors a furin cleavage site insertion in contrast to SARS-CoV, which may be related to its stronger communicability. An avian coronavirus with an extra furin cleavage site upstream of the fusion peptide (S2' site) infected monocyte cells and neuron cells leading to viremia or encephalitis, respectively. Immunohistochemistry and real-time quantitative polymerase chain reaction were used to follow disease progression and demonstrated differences between the parent avian coronavirus and mutated avian coronavirus with a furin-S2' site. Magnetic resonance imaging and biological dye to evaluate the blood-brain barrier permeability showed that avian coronavirus with a furin-S2' site had increased permeability compared with parent avian coronavirus. Immunohistochemistry of brains after intracerebral injection of avian coronavirus and immunofluorescence staining of primary neuron cells demonstrated the furin-S2' site expanded the cell tropism of the mutant avian coronavirus to neuron cells. TNF-α, which has a key role in blood-brain barrier permeability, was highly induced by avian coronavirus with a furin-S2' site compared with the parent avian coronavirus. We demonstrated the process involved in mutant avian coronavirus-induced disease and that the addition of a furin-S2' site changed the virus cell tropism.IMPORTANCECoronaviruses have broken out three times in two decades. Spike (S) protein plays a key role in the process of infection. To clarify importance of furin cleavage site in spike protein for coronavirus, we investigated the pathogenesis of neurotropic avian coronavirus whose spike protein contains an extra furin cleavage site (furin-S2' site). By combining real-time quantitative polymerase chain reaction and immunohistochemistry we demonstrated that infectious bronchitis virus (IBV) infects brain instead of trachea when its S protein contains furin-S2' site. Moreover, the virus was shown to increase the permeability of blood-brain barrier, infect neuron cells and induce high expression of TNF-α. Based on these results we further show that furin cleavage site in S protein plays an important role in coronavirus pathogenicity and cell tropism. Our study extends previous publications on function of S protein of coronavirus, increasing the understanding of researchers to coronavirus.

18.
Front Immunol ; 11: 585254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304349

RESUMO

Mast cells play pivotal roles in the pathogenesis of influenza A virus (IAV) infections. Defective viral particles (DPs) often arise during IAV replication, which can interfere with the replication of infectious viruses and stimulate the antiviral response of host cells. Therefore, DPs are expected to have immune-protective functions in clinic. However, the potent immunogenicity and effectiveness of DPs arising in mast cells during IAV replication have not been reported. In the present study, we showed that DPs generated in the human mastocytoma cell line HMC-1 following H1N1 infection were safe to mice after vaccination. Compared with lung adenocarcinoma cells, A549, DPs generated in infected mast cells had much better immunostimulatory activity, enhancing both humoral and cellular immunity of hosts. Notably, they could significantly increase the expression of immune-associated cytokines, especially the IFN-γ. Due to the robust immunogenicity, thus DPs generated in infected mast cells could stimulate the robust protective immune reaction effectively to fight against lethal IAV re-challenge after vaccination, which result in the high survival, decreased lung injury as well as inhibition of viral replication and inflammatory response in lungs. This study is the first to illustrate and explore the safety, immunogenicity, and effectiveness of DPs arising in mast cells against influenza as favorable potential vaccination. The results provide insight into the advances of new prophylactic strategies to fight influenza by focusing on DPs generated in mast cells.


Assuntos
Vírus Defeituosos/imunologia , Vacinas contra Influenza/imunologia , Mastócitos/virologia , Infecções por Orthomyxoviridae/imunologia , Vírion/imunologia , Animais , Linhagem Celular , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle
19.
Front Microbiol ; 11: 553274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250863

RESUMO

Mast cells play an important role in the pathogenesis of highly pathogenic H5N1 avian influenza virus (H5N1-HPAIV) infection. Defective viral particles (DPs) can interfere with the replication of infectious viruses and stimulate the innate immune response of host cells. However, DPs arising from mast cells during HPAIV replication and their potent antiviral actions has not been reported. Here, we showed that the human mastocytoma cell line, HMC-1, allowed for the productive replication of the H5N1-HPAIV. Compared with alveolar cell line A549, DPs were propagated preferentially and abundantly in mast cells following IAV infection, which can be attributed to the wide existence of Argonaute 2 (AGO2) in HMC-1 cells. In addition, DPs generated in H5N1-infected cells could provide great therapeutic protection on mice to fight against various influenza A viruses, which included not only homologous H5N1-HPAIV, but also heterologous H1N1, H3N2, H7N2, and H9N2. Importantly, DPs generated in H5N1-infected HMC-1 cells could diminish viral virulence in vivo and in vitro by triggering a robust antiviral response through type II interferon signaling pathways. This study is the first to illustrate the arising of DPs in H5N1-HPAIV infected mast cells and explore their favorable ability to protect mice from influenza A viruses infection, which provides a novel insight and valuable information for the progress of new strategies to fight influenza A viruses infection, especially highly pathogenic avian influenza virus infection by focusing on the DPs generated in mast cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...