Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(20): 22751-22759, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32347092

RESUMO

PbS quantum dot solar cells (QDSCs) have emerged as a promising low-cost, solution-processable solar energy harvesting device and demonstrated good air stability and potential for large-scale commercial implementation. PbS QDSCs achieved a record certified efficiency of 12% in 2018 by utilizing an n+-n-p device structure. However, the p-type layer has generally suffered from low carrier mobility due to the organic ligand 1,2-ethanedithiol (EDT) that is used to modify the quantum dot (QD) surface. The low carrier mobility of EDT naturally limits the device thickness as the carrier diffusion length is limited by the low mobility. Herein, we improve the properties of the p-type layer through a two-step hybrid organic ligand treatment. By treating the p-type layer with two types of ligands, 3-mercaptopropionic acid (MPA) and EDT, the PbS QD surface was passivated by a combination of the two ligands, resulting in an overall improvement in open-circuit voltage, fill factor, and current density, leading to an improvement in the cell efficiency from 7.0 to 10.4% for the champion device. This achievement was a result of the improved QD passivation and a reduction in the interdot distance, improving charge transport through the p-type PbS quantum dot film.

2.
ACS Appl Mater Interfaces ; 12(2): 2313-2318, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31840973

RESUMO

Tandem cells are one of the most effective ways of breaking the single junction Shockley-Queisser limit. Solution-processable phosphate-buffered saline (PbS) quantum dots are good candidates for producing multiple junction solar cells because of their size-tunable band gap. The intermediate recombination layer (RL) connecting the subcells in a tandem solar cell is crucial for device performance because it determines the charge recombination efficiency and electrical resistance. In this work, a solution-processed ultrathin NiO and Ag nanoparticle film serves as an intermediate layer to enhance the charge recombination efficiency in PbS QD dual-junction tandem solar cells. The champion devices with device architecture of indium tin oxide/S-ZnO/1.45 eV PbS-PbI2/PbS-EDT/NiO/Ag NP/ZnO NP/1.22 eV PbS-PbI2/PbS-EDT/Au deliver a 7.1% power conversion efficiency, which outperforms the optimized reference subcells. This result underscores the critical role of an appropriate nanocrystalline RL in producing high-performance solution-processed PbS QD tandem cells.

3.
Nanotechnology ; 30(29): 295601, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30917354

RESUMO

Cs2SnI6 is a variant on tin-iodide solution-processable materials and may lead to a lead-free material for use in next-generation photovoltaic cells and other optoelectronics. So far, only a few studies have been conducted where shape and geometry control of Cs2SnI6 nanocrystals is demonstrated. Here we report a general approach to directly synthesize Cs2SnI6 of two-dimensional (2D) layered nanoplatelets as well as three-dimensional (3D) nanocrystals. The shape of Cs2SnI6 nanocrystals could be engineered into 3D nanoparticles and different 2D nanoplatelets with well-defined morphology by choosing different organic acid and amine ligands via a hot injection process. Moreover, the thickness of layered 2D nanoplatelets could be adjusted by changing the amount of Cs-oleate present during the synthesis. The photoluminescence emission peaks changed from 643 to 742 nm based on nanomaterial shape. Our method provides a facile and versatile route to rationally control the shape of the Cs2SnI6 nanocrystals, which will create opportunities for applications in lead-free optoelectronics.

4.
Nanotechnology ; 30(8): 085403, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30248023

RESUMO

The unique tunable bandgaps and straightforward synthesis of colloidal quantum dots make them promising low-cost materials for photovoltaics. High-performance colloidal quantum dot solar cells rely on good-quality electron transporting layers (ETLs) to make carrier selective contacts. Despite extensive use of n-type oxides as ETLs, a detailed understanding of their surface and interface states as well as mechanisms to improve their optical properties are still under development. Here, we report a simple procedure to produce MgCl2 passivated ZnO nanoparticles ETLs that show improved device performance. The MgCl2 treated ZnO electron transporting layers boost the PbS colloidal quantum dot cell efficiency from 6.3% to 8.2%. The cell exhibits reduced defects leading to significant improvements of both FF and J sc. This low-temperature MgCl2 treated ZnO electron transporting layer may be applied in solution processed tandem cells as a promising strategy to further increase cell efficiencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...