Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCO Precis Oncol ; 8: e2300289, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38412387

RESUMO

PURPOSE: Cell-free circulating tumor DNA (ctDNA) has shown its potential as a quantitative biomarker for longitudinal monitoring of response to anticancer therapies. However, ctDNA dynamics have not been studied in patients with heavily pretreated, advanced solid tumors, for whom therapeutic responses can be weak. We investigated whether changes in ctDNA could predict clinical outcomes in such a cohort treated with combined poly(ADP-ribose) polymerase/vascular endothelial growth factor receptor inhibitor therapy. MATERIALS AND METHODS: Patients with metastatic pancreatic ductal adenocarcinoma (PDAC), triple-negative breast cancer (TNBC), small-cell lung cancer (SCLC), or non-small-cell lung cancer (NSCLC) received up to 7 days of cediranib 30 mg orally once daily monotherapy lead-in followed by addition of olaparib 200 mg orally twice daily. Patients had progressed on a median of three previous lines of therapy. Plasma samples were collected before and after cediranib monotherapy lead-in and on combination therapy at 7 days, 28 days, and every 28 days thereafter. ctDNA was quantified from plasma samples using a multigene mutation-based assay. Radiographic assessment was performed every 8 weeks. RESULTS: ctDNA measurements were evaluable in 63 patients. The median baseline ctDNA variant allele fractions (VAFs) were 20%, 28%, 27%, and 34% for PDAC, TNBC, SCLC, and NSCLC, respectively. No association was observed between baseline VAF and radiographic response, progression-free survival, or overall survival (OS). Similarly, no association was found between ctDNA decline and radiographic response or survival. However, an increase in ctDNA at 56 days of combination therapy was associated with disease progression and inferior OS in a landmark analysis. CONCLUSION: ctDNA levels or dynamics did not correlate with radiographic response or survival outcomes in patients with advanced metastatic malignancies treated with olaparib and cediranib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Neoplasias Pancreáticas , Neoplasias de Mama Triplo Negativas , Humanos , DNA Tumoral Circulante/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Poli(ADP-Ribose) Polimerases/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética
2.
Proc Natl Acad Sci U S A ; 117(4): 2084-2091, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932421

RESUMO

BRCA1 promotes error-free, homologous recombination-mediated repair (HRR) of DNA double-stranded breaks (DSBs). When excessive and uncontrolled, BRCA1 HRR activity promotes illegitimate recombination and genome disorder. We and others have observed that the BRCA1-associated protein RAP80 recruits BRCA1 to postdamage nuclear foci, and these chromatin structures then restrict the amplitude of BRCA1-driven HRR. What remains unclear is how this process is regulated. Here we report that both BRCA1 poly-ADP ribosylation (PARsylation) and the presence of BRCA1-bound RAP80 are critical for the normal interaction of BRCA1 with some of its partners (e.g., CtIP and BACH1) that are also known components of the aforementioned focal structures. Surprisingly, the simultaneous loss of RAP80 and failure therein of BRCA1 PARsylation results in the dysregulated accumulation in these foci of BRCA1 complexes. This in turn is associated with the intracellular development of a state of hyper-recombination and gross chromosomal disorder. Thus, physiological RAP80-BRCA1 complex formation and BRCA1 PARsylation contribute to the kinetics by which BRCA1 HRR-sustaining complexes normally concentrate in nuclear foci. These events likely contribute to aneuploidy suppression.


Assuntos
Proteína BRCA1/metabolismo , Proteínas de Ligação a DNA/metabolismo , Chaperonas de Histonas/metabolismo , Reparo de DNA por Recombinação , Proteína BRCA1/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Cromossomos/genética , Cromossomos/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Chaperonas de Histonas/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli ADP Ribosilação , Ligação Proteica
3.
Cancer Discov ; 4(12): 1430-47, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25252691

RESUMO

UNLABELLED: BRCA1 promotes homologous recombination-mediated DNA repair (HRR). However, HRR must be tightly regulated to prevent illegitimate recombination. We previously found that BRCA1 HRR function is regulated by the RAP80 complex, but the mechanism was unclear. We have now observed that PARP1 interacts with and poly-ADP-ribosylates (aka PARsylates) BRCA1. PARsylation is directed at the BRCA1 DNA binding domain and downmodulates its function. Moreover, RAP80 contains a poly-ADP-ribose-interacting domain that binds PARsylated BRCA1 and helps to maintain the stability of PARP1-BRCA1-RAP80 complexes. BRCA1 PARsylation is a key step in BRCA1 HRR control. When BRCA1 PARsylation is defective, it gives rise to excessive HRR and manifestations of genome instability. BRCA1 PARsylation and/or RAP80 expression is defective in a subset of sporadic breast cancer cell lines and patient-derived tumor xenograft models. These observations are consistent with the possibility that such defects, when chronic, contribute to tumor development in BRCA1+/+ individuals. SIGNIFICANCE: We propose a model that describes how BRCA1 functions to both support and restrict HRR. BRCA1 PARsylation is a key event in this process, failure of which triggers hyper-recombination and chromosome instability. Thus, hyperfunctioning BRCA1 can elicit genomic abnormalities similar to those observed in the absence of certain BRCA1 functions.


Assuntos
Proteína BRCA1/metabolismo , Reparo do DNA , Recombinação Homóloga , Poli(ADP-Ribose) Polimerases/metabolismo , Sequência de Aminoácidos , Proteína BRCA1/química , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromossomos Humanos , Dano ao DNA , Proteínas de Ligação a DNA , Feminino , Expressão Gênica , Instabilidade Genômica , Células HeLa , Chaperonas de Histonas , Humanos , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos , Poli(ADP-Ribose) Polimerase-1 , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Subunidades Proteicas/metabolismo , Transdução de Sinais
4.
Genes Dev ; 27(20): 2274-91, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24142877

RESUMO

Endogenous BRCA1 p220 expression peaks in S and G2 when it is activated, and the protein participates in certain key DNA damage responses. In contrast, its expression is markedly reduced in G0/G1. While variations in transcription represent a significant part of p220 expression control, there is at least one other relevant process. We found that a microRNA, miR-545, that is expressed throughout the cell cycle down-modulates endogenous p220 mRNA and protein abundance directly in both G0/G1 and S/G2. When miR-545 function was inhibited by a specific antagomir, endogenous p220 expression increased in G0/G1, and aberrant p220-associated DNA damage responses and de novo DNA strand breaks accumulated. Analogous results were observed upon inhibition of miR-545 function in S/G2. Both sets of antagomir effects were mimicked by infecting cells with a p220 cDNA-encoding adenoviral vector. Thus, strand breaks were a product of p220 overexpression, and their prevention by miR-545 depends on its modulation of p220 expression. Breaks were also dependent on aberrant, overexpressed p220-driven recruitment of RAD51 to either spontaneously arising or mutagen-based DNA damage sites. Hence, when its level is not physiologically maintained, endogenous p220 aberrantly directs at least one DNA repair protein, RAD51, to damage sites, where their action contributes to the development of de novo DNA damage. Thus, like its loss, a surfeit of endogenous p220 function represents a threat to genome integrity.


Assuntos
Proteína BRCA1/genética , Ciclo Celular/fisiologia , Dano ao DNA/genética , Regulação da Expressão Gênica , Proteína BRCA1/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Dano ao DNA/efeitos da radiação , Reparo do DNA , Células HEK293 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Rad51 Recombinase/metabolismo , Raios Ultravioleta
5.
Mol Cell ; 48(5): 723-33, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23122415

RESUMO

Chromatin remodeling during DNA double-strand break (DSB) repair is required to facilitate access to and repair of DSBs. This remodeling requires increased acetylation of histones and a shift in nucleosome organization to create open, relaxed chromatin domains. However, the underlying mechanism driving changes in nucleosome structure at DSBs is poorly defined. Here, we demonstrate that histone H2A.Z is exchanged onto nucleosomes at DSBs by the p400 remodeling ATPase. H2A.Z exchange at DSBs shifts the chromatin to an open conformation and is required for acetylation and ubiquitination of histones and for loading of the brca1 complex. H2A.Z exchange also restricts single-stranded DNA production by nucleases and is required for loading of the Ku70/Ku80 DSB repair protein. H2A.Z exchange therefore promotes specific patterns of histone modification and reorganization of the chromatin architecture, leading to the assembly of a chromatin template that is an efficient substrate for the DSB repair machinery.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/metabolismo , Nucleossomos/metabolismo , Acetilação , Adenosina Trifosfatases/metabolismo , Antígenos Nucleares/metabolismo , Sítios de Ligação , Ligação Competitiva , Proteínas de Transporte/metabolismo , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta à Radiação , Endodesoxirribonucleases , Células HEK293 , Células HeLa , Histonas/química , Histonas/genética , Humanos , Autoantígeno Ku , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/efeitos da radiação , Interferência de RNA , Fatores de Tempo , Transfecção , Ubiquitinação
6.
Cancer Res ; 72(17): 4289-93, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22915759

RESUMO

The human CCND1 gene, which encodes the cell-cycle protein cyclin D1, is one of the most frequently amplified genes in human cancers. Cyclin D1 activates the cyclin-dependent kinases CDK4 and CDK6 and drives cell proliferation. Beyond the cell-cycle role, the full repertoire of cyclin D1 functions in cancer cells is still unclear. Emerging evidence indicates that cyclin D1 may play a role in DNA damage response. In this review, we discuss observations linking cyclin D1 to DNA damage repair and summarize our recent findings, which show a cyclin D1 function in homologous recombination-mediated DNA repair.


Assuntos
Ciclina D1/metabolismo , Dano ao DNA , Reparo do DNA , Proteômica , Recombinação Homóloga , Humanos , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/terapia , Proteólise , Proteoma
7.
Mol Cell ; 47(3): 396-409, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22704558

RESUMO

Completion of DNA replication after replication stress depends on PCNA, which undergoes monoubiquitination to stimulate direct bypass of DNA lesions by specialized DNA polymerases or is polyubiquitinated to promote recombination-dependent DNA synthesis across DNA lesions by template switching mechanisms. Here we report that the ZRANB3 translocase, a SNF2 family member related to the SIOD disorder SMARCAL1 protein, is recruited by polyubiquitinated PCNA to promote fork restart following replication arrest. ZRANB3 depletion in mammalian cells results in an increased frequency of sister chromatid exchange and DNA damage sensitivity after treatment with agents that cause replication stress. Using in vitro biochemical assays, we show that recombinant ZRANB3 remodels DNA structures mimicking stalled replication forks and disassembles recombination intermediates. We therefore propose that ZRANB3 maintains genomic stability at stalled or collapsed replication forks by facilitating fork restart and limiting inappropriate recombination that could occur during template switching events.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Instabilidade Genômica/fisiologia , Poliubiquitina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estresse Fisiológico/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Dano ao DNA/fisiologia , DNA Helicases/genética , Proteínas de Fluorescência Verde/genética , Humanos , Dados de Sequência Molecular , Osteossarcoma , Ligação Proteica/fisiologia , Recombinação Genética/fisiologia , Troca de Cromátide Irmã/fisiologia , Ubiquitinação/fisiologia
8.
Nature ; 474(7350): 230-4, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21654808

RESUMO

Cyclin D1 is a component of the core cell cycle machinery. Abnormally high levels of cyclin D1 are detected in many human cancer types. To elucidate the molecular functions of cyclin D1 in human cancers, we performed a proteomic screen for cyclin D1 protein partners in several types of human tumours. Analyses of cyclin D1 interactors revealed a network of DNA repair proteins, including RAD51, a recombinase that drives the homologous recombination process. We found that cyclin D1 directly binds RAD51, and that cyclin D1-RAD51 interaction is induced by radiation. Like RAD51, cyclin D1 is recruited to DNA damage sites in a BRCA2-dependent fashion. Reduction of cyclin D1 levels in human cancer cells impaired recruitment of RAD51 to damaged DNA, impeded the homologous recombination-mediated DNA repair, and increased sensitivity of cells to radiation in vitro and in vivo. This effect was seen in cancer cells lacking the retinoblastoma protein, which do not require D-cyclins for proliferation. These findings reveal an unexpected function of a core cell cycle protein in DNA repair and suggest that targeting cyclin D1 may be beneficial also in retinoblastoma-negative cancers which are currently thought to be unaffected by cyclin D1 inhibition.


Assuntos
Ciclina D1/metabolismo , Reparo do DNA , Neoplasias/metabolismo , Mapeamento de Interação de Proteínas , Rad51 Recombinase/metabolismo , Animais , Linhagem Celular Tumoral , Ensaio Cometa , Ciclina D1/deficiência , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Células HeLa , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica/efeitos da radiação , Radiação Ionizante , Recombinação Genética/genética , Proteína do Retinoblastoma/deficiência
9.
Genes Dev ; 25(7): 685-700, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21406551

RESUMO

In response to DNA double-strand breaks (DSBs), BRCA1 forms biochemically distinct complexes with certain other DNA damage response proteins. These structures, some of which are required for homologous recombination (HR)-type DSB repair, concentrate at distinct nuclear foci that demarcate sites of genome breakage. Polyubiquitin binding by one of these structures, the RAP80/BRCA1 complex, is required for efficient BRCA1 focal recruitment, but the relationship of this process to the execution of HR has been unclear. We found that this complex actively suppresses otherwise exaggerated, BRCA1-driven HR. By controlling the kinetics by which other BRCA1-interacting proteins that promote HR concentrate together with BRCA1 in nuclear foci, RAP80/BRCA1 complexes suppress excessive DSB end processing, HR-type DSB repair, and overt chromosomal instability. Since chromosomal instability emerges when BRCA1 HR function is either unbridled or absent, active tuning of BRCA1 activity, executed in nuclear foci, is important to genome integrity maintenance.


Assuntos
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Transporte/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Radiação Ionizante , Recombinação Genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Instabilidade Cromossômica , Cromossomos/química , Cromossomos/genética , Cromossomos/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Células HEK293 , Células HeLa , Chaperonas de Histonas , Humanos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética
10.
J Hepatol ; 55(1): 96-102, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21354236

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is frequently a lethal disease and one of the few malignancies that is still increasing in incidence around the world. Better animal models are highly desired to investigate the molecular basis of HCC and to develop novel therapeutic strategies. Alpha-fetoprotein (Afp) gene is expressed in fetal liver, silenced soon after birth, and highly re-expressed in hepatocellular carcinomas (HCC). We aimed to take advantage of the dramatic re-expression of the Afp gene in HCC to develop a hepatocarcinogenesis reporter (HCR) mouse model for dual-modality, longitudinal in vivo imaging of liver tumor development, and progression. METHODS: Knock in mice were established by placing a thymidinekinase (tk)-luciferase (luc) reporter gene cassette under the transcriptional control of the endogenous Afp promoter. DEN, a liver carcinogen, was used to induce liver tumors, which was monitored by both luc-based bioluminescent (BL) and tk-based positron emission tomography (PET) imaging. RESULTS: The expression profile of luc was identical to that of the endogenous Afp gene during development. As early as 2 months after the exposure to DEN, BLI revealed multifocal signals in the liver, long before the appearance of histologically apparent neoplastic lesions. By 6 months, BL and PET dual imaging showed strong signals in malignant HCC. By serendipity, a strong BL signal was also detected in adult testes, a previously unknown site of Afp expression. CONCLUSIONS: The HCR model enables longitudinal monitoring of liver tumor development and progression, providing a powerful tool in developing chemoprevention and therapeutic strategies for HCC.


Assuntos
Neoplasias Hepáticas Experimentais/etiologia , Luciferases/genética , Timidina Quinase/genética , alfa-Fetoproteínas/genética , Animais , Dietilnitrosamina/toxicidade , Modelos Animais de Doenças , Progressão da Doença , Feminino , Técnicas de Introdução de Genes , Genes Reporter , Humanos , Neoplasias Hepáticas Experimentais/diagnóstico por imagem , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Luminescência , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons , Lesões Pré-Cancerosas/diagnóstico por imagem , Lesões Pré-Cancerosas/etiologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia
11.
World J Gastroenterol ; 16(12): 1482-6, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20333788

RESUMO

AIM: To investigate whether Recql5, a DNA helicase that plays an important role in the maintenance of genome integrity, is a tumor suppressor in the gastrointestinal tract in mice. METHODS: We generated cohorts of both Recql5-proficient and Recql5-deficient Apc(min/+) mice and compared the tumor susceptibility in their gastrointestinal tracts. RESULTS: Recql5 deficiency in Apc(min/+) mice resulted in a significant increase in the tumor incidence in both the colon (P = 0.0162) and the small intestine (P < 0.01). These findings have provided the first genetic evidence for a tumor suppression role of Recql5 in the gastrointestinal tract of mice. Importantly, since mouse Recql5 and human RECQL5 are highly conserved, these findings also suggest that RECQL5 may be a tumor suppressor for human colon cancer. CONCLUSION: Recql5 has a tumor suppression role in the mouse gastrointestinal tract.


Assuntos
Adenoma/genética , Genes APC , Neoplasias Intestinais/genética , RecQ Helicases/deficiência , Proteínas Supressoras de Tumor/deficiência , Adenoma/enzimologia , Adenoma/patologia , Adenoma/prevenção & controle , Animais , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias Duodenais/enzimologia , Neoplasias Duodenais/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias do Íleo/enzimologia , Neoplasias do Íleo/genética , Neoplasias Intestinais/enzimologia , Neoplasias Intestinais/patologia , Neoplasias Intestinais/prevenção & controle , Neoplasias do Jejuno/enzimologia , Neoplasias do Jejuno/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RecQ Helicases/genética , Proteínas Supressoras de Tumor/genética
12.
Cancer Treat Rev ; 35(7): 590-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19635647

RESUMO

Increased chemo-resistance and radio-resistance of cancer cells is a major obstacle in the treatment and management of malignant cancers. An important mechanism that underlies the development of such therapeutic resistance is that cancer cells recognize DNA lesions induced by DNA-damaging agents and by ionizing radiation, and repair these lesions by activating various DNA repair pathways. Therefore, Use of pharmacological agents that can inhibit certain DNA repair pathways in cancer cells has the potential for enhancing the targeted cytotoxicity of anticancer treatments and reversing the associated therapeutic resistance associated with DNA repair; such agents, offering a promising opportunity to achieve better therapeutic efficacy. Here we review the major DNA repair pathways and discuss recent advances in the development of novel inhibitors of DNA repair pathways; many of these agents are under preclinical/clinical investigation.


Assuntos
Reparo do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Humanos
13.
Mol Biol Cell ; 20(1): 114-23, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987339

RESUMO

Disruption of replication can lead to loss of genome integrity and increase of cancer susceptibility in mammals. Thus, a replication impediment constitutes a formidable challenge to these organisms. Recent studies indicate that homologous recombination (HR) plays an important role in suppressing genome instability and promoting cell survival after exposure to various replication inhibitors, including a topoisomerase I inhibitor, camptothecin (CPT). Here, we report that the deletion of RecQ helicase Recql5 in mouse ES cells and embryonic fibroblast (MEF) cells resulted in a significant increase in CPT sensitivity and a profound reduction in DNA replication after the treatment with CPT, but not other DNA-damaging agents. This CPT-induced cell death is replication dependent and occurs primarily after the cells had exited the first cell cycle after CPT treatment. Furthermore, we show that Recql5 functions nonredundantly with Rad51, a key factor for HR to protect mouse ES cells from CPT-induced cytotoxicity. These new findings strongly suggest that Recql5 plays an important role in maintaining active DNA replication to prevent the collapse of replication forks and the accumulation of DSBs in order to preserve genome integrity and to prevent cell death after replication stress as a result of topoisomerase I poisoning.


Assuntos
Camptotecina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA , Células-Tronco Embrionárias , Inibidores Enzimáticos/farmacologia , Fibroblastos , RecQ Helicases/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Replicação do DNA/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Camundongos , Rad51 Recombinase/metabolismo , RecQ Helicases/genética
14.
Genes Dev ; 21(23): 3073-84, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18003859

RESUMO

Members of the RecQ helicase family play critical roles in genome maintenance. There are five RecQ homologs in mammals, and defects in three of these (BLM, WRN, and RECQL4) give rise to cancer predisposition syndromes in humans. RECQL and RECQL5 have not been associated with a human disease. Here we show that deletion of Recql5 in mice results in cancer susceptibility. Recql5-deficient cells exhibit elevated frequencies of spontaneous DNA double-strand breaks and homologous recombination (HR) as scored using a reporter that harbors a direct repeat, and are prone to gross chromosomal rearrangements in response to replication stress. To understand how RECQL5 regulates HR, we use purified proteins to demonstrate that human RECQL5 binds the Rad51 recombinase and inhibits Rad51-mediated D-loop formation. By biochemical means and electron microscopy, we show that RECQL5 displaces Rad51 from single-stranded DNA (ssDNA) in a reaction that requires ATP hydrolysis and RPA. Together, our results identify RECQL5 as an important tumor suppressor that may act by preventing inappropriate HR events via Rad51 presynaptic filament disruption.


Assuntos
Neoplasias Experimentais/prevenção & controle , Rad51 Recombinase/metabolismo , RecQ Helicases/metabolismo , Recombinação Genética , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Histonas/metabolismo , Humanos , Hidrólise , Perda de Heterozigosidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Mutação , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Rad51 Recombinase/genética , RecQ Helicases/deficiência , RecQ Helicases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Mol Cell Biol ; 25(9): 3431-42, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15831450

RESUMO

In eukaryotes, crossovers in mitotic cells can have deleterious consequences and therefore must be suppressed. Mutations in BLM give rise to Bloom syndrome, a disease that is characterized by an elevated rate of crossovers and increased cancer susceptibility. However, simple eukaryotes such as Saccharomyces cerevisiae have multiple pathways for suppressing crossovers, suggesting that mammals also have multiple pathways for controlling crossovers in their mitotic cells. We show here that in mouse embryonic stem (ES) cells, mutations in either the Bloom syndrome homologue (Blm) or the Recql5 genes result in a significant increase in the frequency of sister chromatid exchange (SCE), whereas deleting both Blm and Recql5 lead to an even higher frequency of SCE. These data indicate that Blm and Recql5 have nonredundant roles in suppressing crossovers in mouse ES cells. Furthermore, we show that mouse embryonic fibroblasts derived from Recql5 knockout mice also exhibit a significantly increased frequency of SCE compared with the corresponding wild-type control. Thus, this study identifies a previously unknown Recql5-dependent, Blm-independent pathway for suppressing crossovers during mitosis in mice.


Assuntos
Adenosina Trifosfatases/fisiologia , Síndrome de Bloom/genética , Troca Genética/genética , DNA Helicases/fisiologia , Troca de Cromátide Irmã/genética , Adenosina Trifosfatases/genética , Animais , Troca Genética/fisiologia , Troca Genética/efeitos da radiação , DNA Helicases/genética , Fibroblastos/efeitos da radiação , Raios gama , Deleção de Genes , Inativação Gênica , Marcação de Genes , Camundongos , Camundongos Knockout , Mitose/genética , Mitose/fisiologia , Mitose/efeitos da radiação , RecQ Helicases , Troca de Cromátide Irmã/fisiologia , Células-Tronco/efeitos da radiação
16.
Lin Chuang Er Bi Yan Hou Ke Za Zhi ; 16(5): 196-7, 2002 May.
Artigo em Chinês | MEDLINE | ID: mdl-12592648

RESUMO

OBJECTIVE: To study the treatment of inverted papilloma (NIP) with intracranial extension. METHOD: Nine patients of NIP all suffered from the operation. Six patients with anterior skull base erosion suffered from large tumor resections via combined craniofacial and cranial approach. Three patients suffered from small tumor resections via transfrontal and transethmoidal sinus approach. The defects of basicranial bone and dura were repaired at the same time. Five patients were found the tissue canceration in the postoperation. RESULT: In 7 patients followed-up from 3 to 13 years, no one has recurrenced. CONCLUSION: The canceration probability of NIP with intracranial extension should be sufficiently considered. The tumor resection via combined craniofacial approach or transfrontal approach must be based on the tumor size and extension, and removed completely.


Assuntos
Neoplasias Nasais/cirurgia , Papiloma Invertido/cirurgia , Neoplasias dos Seios Paranasais/cirurgia , Adulto , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Nasais/patologia , Papiloma Invertido/patologia , Neoplasias dos Seios Paranasais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...