Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110841

RESUMO

Lead pollution has increasingly become the focus of environmental pollution, which is a great harm to the ecological environment and human health. Strict control of the emission of lead pollutants and accurate monitoring of lead are very important. The lead ion detection technologies are introduced here, including spectrophotometry, electrochemical method, atomic absorption spectrometry, and other detection methods, and the methods' applicability, the advantages, and disadvantages are discussed. The detection limits of voltammetry and atomic absorption spectrometry are as low as 0.1 µg/L, and those of atomic absorption spectrometry are as low as 2 µg/L. The detection limit of photometry is higher (0.01 mg/L), but this method can be achieved in most laboratories. The application of different extraction pretreatment technologies in lead ion detection is introduced. The new technologies develop at home and abroad, such as precious metal nanogold technology, paper microfluidic technology, fluorescence molecular probe technology, spectroscopy, and other emerging technologies in recent years, are reviewed, and the principle and application of various technologies are expounded.

2.
Insects ; 12(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802992

RESUMO

The bean bug, Riptortus pedestris, is a major pest of soybeans. In order to assess the critical stages of soybean damage by R. pedestris, we tested the damage to soybeans at different growth stages (R2, R4, and R6) caused by five densities of R. pedestris (1, 2, 3, 4, and 5) through a field cage experiment. The results show that the R4 stage was the most sensitive stage in terms of suffering R. pedestris injury damage, followed by the R6 stage and then the R2 stage. The number of stay green leaves was 7.04 per plant, the abortive pod rate of the soybeans was 56.36%, and the abortive seed rate of the soybeans was 46.69%. The dry weight of the soybeans was 14.20 g at the R4 stage; these values of R4 were significantly higher than at the R2 and R6 stages. However, the dry weight of soybean seed was 4.27 g and the nutrient transfer rate was 27.01% in the R4 stage; these values were significantly lower than in the R2 and R6 stages. The number of stay green leaves, abortive pod rates, and abortive seed rates were all increased significantly with increasing pest density at each stage of soybean growth. However, the nutrient transfer rate was significantly decreased with the increase in the pest density. Soybean nutrition factors changed after they suffered R. pedestris injury; the lipid content of the soybean seed decreased and the lipid content of the soybean plant increased compared to controls, when tested with a density of five R. pedestris in the R4 stage. These results will be beneficial to the future management of R. pedestris in soybean fields.

3.
Environ Res ; 194: 110684, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33417912

RESUMO

ZnO quantum dots were synthesized by chemical precipitation, CuFe2O4 nanoparticles were prepared by in situ synthesis of cellulose, and then ZnO/CuFe2O4 (ZCF) composites were fabricated. A photocatalyst (ZCF@MB-MIP) with specific molecule recognition and photocatalytic degradation characteristics was then produced by a surface imprinting method using methylene blue (MB) as the template molecule. The structure of ZCF@MB-MIP was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy and X-ray diffraction. The photocatalytic efficiency of ZCF@MB-MIP and its specific recognition performance in MB degradation was analyzed. The adsorption kinetics of MB by ZCF@MB-MIP conformed to the quasi-secondary adsorption kinetics model. ZCF@MB-MIP displayed effective photocatalytic degradation of MB under natural light. The degradation rate reached 95.8%, which was much higher than those of ZCF, CuFe2O4 nanoparticles, and a non-imprinted reference sample under the same conditions. This work is a useful reference for the construction of photocatalysts that show highly selective recognition of dye molecules.


Assuntos
Azul de Metileno , Nanopartículas , Catálise , Polímeros Molecularmente Impressos , Difração de Raios X
4.
ACS Omega ; 5(32): 20664-20673, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32832820

RESUMO

ZnO quantum dots and CuFe2O4 nanoparticles were synthesized by chemical precipitation. The ZCF composite was created by the solvothermal method. A new molecularly imprinted fluorescence sensor (ZCF@MB-MIP) with unique optical properties and specific MB recognition was successfully generated. ZCF@MB-MIPs were characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and X-ray diffraction and were applied for the selective detection of methylene blue (MB). The optimal working time of ZCF@MB-MIPs was 15 min, and the optimal working concentration was 37 mg·L-1. The fluorescence intensity was linearly quenched within the 0-100 µmol·L-1 MB range, and the detection limit was 1.27 µmol·L-1. The imprinting factor of the sensor (IF, K MB-MIPs/N-MIPs) was 5.30. At the same time, a real-time monitoring system was established for the photodegradation process of MB, which had the effect of reflecting the degradation degree of MB at any given time. Hence, ZCF@MB-MIPs are a promising candidate for use in MB monitoring, and they also provides a new strategy for constructing a multifunctional fluorescence sensor with a high selectivity and photolysis function.

5.
RSC Adv ; 8(69): 39721-39730, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35558015

RESUMO

New molecularly imprinted polymers (MIPs), which exhibit specific recognition of ethyl carbamate (EC) have been synthesized and studied. In this process, EC was the template molecule and ß-cyclodextrin derivatives were employed as functional monomers in the molecular imprinting technique (MIT). An EC molecularly imprinted sensor (EC-MIS) was prepared by using MIT surface modification. The EC-MIS was characterized by cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. EC detection performance, binding parameters and dynamics mechanism were investigated. The result showed that the synthetic route designed was appropriate and that new MIP and EC-MIS were successfully prepared. The EC-MIS exhibited a good molecular recognition of EC. A linear relationship between current and EC concentration was observed using cyclic voltammetry and the detection limit was 5.86 µg L-1. The binding constant (K = 4.75 × 106 L mol-1) between EC and the EC-MIS, as well as, the number of binding sites (n = 1.48) has been determined. The EC-MIS recognition mechanism for the EC is a two-step process. The sensor was applied for the determination of EC in Chinese yellow wines, and the results were in good agreement with the gas chromatography-mass spectrometry (GC-MS) method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...