Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Periodontal Res ; 59(2): 355-365, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38102743

RESUMO

OBJECTIVES: This study sought to explore the role of developmental endothelial locus-1 (DEL-1) in osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and investigate the therapeutic effect of DEL-1 in ligature-induced experimental periodontitis with type 2 diabetes mellitus (T2DM). BACKGROUND: T2DM is a significant risk factor for periodontitis. Treatment modalities for periodontitis with T2DM are being explored. DEL-1 is a versatile protein that can modulate the different stages of inflammatory diseases including periodontitis. The direct effect of DEL-1 on osteogenic differentiation of PDLSCs in periodontitis with T2DM is poorly understood. METHODS: Primary hPDLSCs were isolated from periodontal ligament tissue and identified by flow cytometry. In osteogenesis experiments, alkaline phosphatase (ALP), Alizarin Red staining and western blot were used to assess the osteogenic effect of DEL-1 on hPDLSCs in high glucose and inflammation environments. The mouse model of ligature-induced experimental periodontitis was established. H&E and Masson's trichrome staining were used to assess the change of periodontal tissue after local periodontal injection of DEL-1. Immunohistochemical staining was used to evaluate osteogenic-related protein expression. RESULTS: hPDLSCs expressed mesenchymal stem cell (MSC)-specific surface markers and were negative for hematopoietic cell surface markers. hPDLSCs had the potential for multidirectional differentiation. DEL-1 could enhance the osteogenic differentiation of hPDLSCs in high glucose and inflammation environments, although it did not return to the control level. Histological staining showed that DEL-1 contributed to alveolar bone regeneration and osteogenic-related protein expression, but the degree of improvement in T2DM mice was lower than in non-T2DM mice. CONCLUSIONS: In summary, we demonstrated that DEL-1 could promote osteogenic differentiation of hPDLSCs in high glucose and inflammation environment and rescue alveolar bone loss in experimental periodontitis with T2DM, which could provide a novel therapeutic target for periodontitis with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Periodontite , Humanos , Camundongos , Animais , Osteogênese , Diabetes Mellitus Tipo 2/complicações , Diferenciação Celular , Inflamação , Regeneração Óssea , Ligamento Periodontal , Glucose/farmacologia , Células Cultivadas
2.
Bioact Mater ; 21: 324-339, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36185747

RESUMO

Diabetes mellitus (DM) aggravates periodontitis, resulting in accelerated periodontal bone resorption. Disordered glucose metabolism in DM causes reactive oxygen species (ROS) overproduction resulting in compromised bone healing, which makes diabetic periodontal bone regeneration a major challenge. Inspired by the natural bone healing cascade, a mesoporous silica nanoparticle (MSN)-incorporated PDLLA (poly(dl-lactide))-PEG-PDLLA (PPP) thermosensitive hydrogel with stepwise cargo release is designed to emulate the mesenchymal stem cell "recruitment-osteogenesis" cascade for diabetic periodontal bone regeneration. During therapy, SDF-1 quickly escapes from the hydrogel due to diffusion for early rat bone marrow stem cell (rBMSC) recruitment. Simultaneously, slow degradation of the hydrogel starts to gradually expose the MSNs for sustained release of metformin, which can scavenge the overproduced ROS under high glucose conditions to reverse the inhibited osteogenesis of rBMSCs by reactivating the AMPK/ß-catenin pathway, resulting in regulation of the diabetic microenvironment and facilitation of osteogenesis. In vitro experiments indicate that the hydrogel markedly restores the inhibited migration and osteogenic capacities of rBMSCs under high glucose conditions. In vivo results suggest that it can effectively recruit rBMSCs to the periodontal defect and significantly promote periodontal bone regeneration under type 2 DM. In conclusion, our work provides a novel therapeutic strategy of a bioinspired drug-delivery system emulating the natural bone healing cascade for diabetic periodontal bone regeneration.

3.
Nat Commun ; 13(1): 6445, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307408

RESUMO

Sulfur-heteroatom bonds such as S-S and S-N are found in a variety of natural products and often play important roles in biological processes. Despite their widespread applications, the synthesis of sulfenamides, which feature S-N bonds that may be cleaved under mild conditions, remains underdeveloped. Here, we report a method for synthesis of N-acyl sulfenamides via copper-catalyzed nitrene-mediated S-amidation reaction of thiols with dioxazolones. This method is efficient, convenient, and broadly applicable. Moreover, the resulting N-acetyl sulfenamides are highly effective S-sulfenylation reagents for the synthesis of unsymmetrical disulfides under mild conditions. The S-sulfenylation protocol enables facile access to sterically demanding disulfides that are difficult to synthesize by other means.


Assuntos
Cobre , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Cobre/química , Indicadores e Reagentes , Estrutura Molecular , Catálise , Dissulfetos/química
4.
Nat Biotechnol ; 32(10): 1045-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25218520

RESUMO

Wild relatives of crops are an important source of genetic diversity for agriculture, but their gene repertoire remains largely unexplored. We report the establishment and analysis of a pan-genome of Glycine soja, the wild relative of cultivated soybean Glycine max, by sequencing and de novo assembly of seven phylogenetically and geographically representative accessions. Intergenomic comparisons identified lineage-specific genes and genes with copy number variation or large-effect mutations, some of which show evidence of positive selection and may contribute to variation of agronomic traits such as biotic resistance, seed composition, flowering and maturity time, organ size and final biomass. Approximately 80% of the pan-genome was present in all seven accessions (core), whereas the rest was dispensable and exhibited greater variation than the core genome, perhaps reflecting a role in adaptation to diverse environments. This work will facilitate the harnessing of untapped genetic diversity from wild soybean for enhancement of elite cultivars.


Assuntos
Genoma de Planta/genética , Genômica/métodos , Glycine max/genética , Glycine max/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Agricultura , Sequência de Aminoácidos , Biomassa , DNA de Plantas/análise , DNA de Plantas/genética , Resistência à Doença/genética , Dados de Sequência Molecular , Filogenia , Sementes/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Glycine max/classificação
5.
BMC Genomics ; 12 Suppl 3: S2, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22369658

RESUMO

BACKGROUND: Detoxification proteins are a class of proteins for degradation and/or elimination of endogenous and exogenous toxins or medicines, as well as reactive oxygen species (ROS) produced by these materials. Most of these proteins are generated as a response to the stimulation of toxins or medicines. They are essential for the clearance of harmful substances and for maintenance of physiological balance in organisms. Thus, it is important to collect and integrate information on detoxification proteins. RESULTS: To store, retrieve and analyze the information related to their features and functions, we developed the DetoxiProt, a comprehensive database for annotation of these proteins. This database provides detailed introductions about different classes of the detoxification proteins. Extensive annotations of these proteins, including sequences, structures, features, inducers, inhibitors, substrates, chromosomal location, functional domains as well as physiological-biochemical properties were generated. Furthermore, pre-computed BLAST results, multiple sequence alignments and evolutionary trees for detoxification proteins are also provided for evolutionary study of conserved function and pathways. The current version of DetoxiProt contains 5956 protein entries distributed in 628 organisms. An easy to use web interface was designed, so that annotations about each detoxification protein can be retrieved by browsing with a specific method or by searching with different criteria. CONCLUSIONS: DetoxiProt provides an effective and efficient way of accessing the detoxification protein sequences and other high-quality information. This database would be a valuable source for toxicologists, pharmacologists and medicinal chemists. DetoxiProt database is freely available at http://lifecenter.sgst.cn/detoxiprot/.


Assuntos
Bases de Dados de Proteínas , Proteínas/metabolismo , Inativação Metabólica , Armazenamento e Recuperação da Informação , Internet , Proteínas/química , Proteínas/genética , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...