Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(7): 6455-6477, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613794

RESUMO

Gastric cancer presents a formidable challenge, marked by its debilitating nature and often dire prognosis. Emerging evidence underscores the pivotal role of tumor stem cells in exacerbating treatment resistance and fueling disease recurrence in gastric cancer. Thus, the identification of genes contributing to tumor stemness assumes paramount importance. Employing a comprehensive approach encompassing ssGSEA, WGCNA, and various machine learning algorithms, this study endeavors to delineate tumor stemness key genes (TSKGs). Subsequently, these genes were harnessed to construct a prognostic model, termed the Tumor Stemness Risk Genes Prognostic Model (TSRGPM). Through PCA, Cox regression analysis and ROC curve analysis, the efficacy of Tumor Stemness Risk Scores (TSRS) in stratifying patient risk profiles was underscored, affirming its ability as an independent prognostic indicator. Notably, the TSRS exhibited a significant correlation with lymph node metastasis in gastric cancer. Furthermore, leveraging algorithms such as CIBERSORT to dissect immune infiltration patterns revealed a notable association between TSRS and monocytes and other cell. Subsequent scrutiny of tumor stemness risk genes (TSRGs) culminated in the identification of CDC25A for detailed investigation. Bioinformatics analyses unveil CDC25A's implication in driving the malignant phenotype of tumors, with a discernible impact on cell proliferation and DNA replication in gastric cancer. Noteworthy validation through in vitro experiments corroborated the bioinformatics findings, elucidating the pivotal role of CDC25A expression in modulating tumor stemness in gastric cancer. In summation, the established and validated TSRGPM holds promise in prognostication and delineation of potential therapeutic targets, thus heralding a pivotal stride towards personalized management of this malignancy.


Assuntos
Aprendizado de Máquina , Células-Tronco Neoplásicas , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-29955237

RESUMO

Total flavones of Rhododendron simsii Planch flower (TFR) have a significant protective effect against cerebral ischemia-reperfusion injury. However, its mechanism is unclear. This study investigated the protection of TFR against cerebral ischemia-reperfusion injury via cystathionine-γ-lyase- (CSE-) produced H2S mechanism. CSE-/- mice and CSE-siRNA-transfected rat were used. Relaxation of cerebral basilar artery (CBA), H2S, and CSE mRNA were measured. TFR significantly inhibited cerebral ischemia-reperfusion-induced abnormal neurological symptom and cerebral infarct in the normal rats and the CSE+/+ mice, but not in the CSE-/- mice, and the inhibition was markedly attenuated in CSE-siRNA-transfected rat; TFR elicited a significant vasorelaxation in rat CBA, and the relaxation was markedly attenuated by removal of endothelium or CSE-siRNA transfection or coapplication of NO synthase inhibitor L-NAME and PGI2 synthase inhibitor Indo. CSE inhibitor PPG drastically inhibited TFR-evoked vasodilatation resistant to L-NAME and Indo in endothelium-intact rat CBA. TFR significantly increased CSE mRNA expression in rat CBA endothelial cells and H2S production in rat endothelium-intact CBA. The increase of H2S production resistant to L-NAME and Indo was abolished by PPG. Our data indicate that TFR has a protective effect against the cerebral ischemia-reperfusion injury via CSE-produced H2S and endothelial NO and/or PGI2 to relax the cerebral artery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...