Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 114(7): 2697-700, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20121221

RESUMO

The mechanism of ethylene insertions into eight tertiary diamine/n-butyllithium complexes has been studied at the BLYP/DNP level. In contrast to the cationic coordination polymerization in which a strong coordination complex between ethylene and the metal center is formed prior to ethylene insertion, there is only a weak van der Waals complex between ethylene and tertiary diamine/n-butyllithium complex. After crossing a four-membered-ring transition state, ethylene inserts into the Li-C bond. The insertion barriers for the eight reactions are in the range of 6.9-11.0 kcal/mol, comparable to those of ethylene cationic coordination polymerizations. However, the polymerization activities of ethylene anionic polymerizations are much lower than those of cationic coordination polymerizations. Comparing the energy profiles of these ethylene anionic polymerizations with those of cationic coordination polymerizations, it can be found that the transition states in the ethylene anionic polymerizations are higher in energy than the reactants, while the transition states in ethylene cationic coordination polymerizations are lower than the reactants. Therefore, ethylene anionic polymerizations need additional energy to climb the energy barriers, while the energies for overcoming the transition states in the cationic coordination polymerizations can be obtained from reactants that are higher in energy than the reactants. We reason the differences in their energy profiles could be one of the reasons for the lower activity of ethylene anionic polymerization than ethylene cationic coordination polymerization despite their comparable insertion barriers.


Assuntos
Simulação por Computador , Diaminas/química , Etilenos/síntese química , Modelos Químicos , Compostos Organometálicos/química , Etilenos/química , Estrutura Molecular , Teoria Quântica
2.
Chemistry ; 11(2): 669-79, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15578691

RESUMO

A series of cycloalkylidene-bridged cyclopentadienyl metallocene complexes, [(CH(2))(n)C(C(5)H(4))(2)MCl(2)] (M = Ti, n = 4 (4), 5 (5), 6 (6); M = Zr, n = 4 (7), 5 (8), 6 (9); M = Hf, n = 4 (10), 5 (11), 6 (12)), have been synthesized and applied to ethylene polymerization after activation with methyl aluminoxane (MAO). The cycloalkylidene-bridged titanocene catalysts exhibit much higher activities than the corresponding zirconocene and hafnocene analogues, and have the highest activities at higher temperatures. In comparison, the silacyclopentylidene-bridged metallocene complexes [(CH(2))(4)Si(C(5)H(4))(2)MCl(2)] (M = Ti (13), Zr (14)) and isopropylene-bridged metallocene complexes [Me(2)C(C(5)H(4))(2)MCl(2)] (M = Ti (15), Zr (16)) have also been synthesized and applied to ethylene polymerization. In both cases, the titanocene complexes show much higher activities than the corresponding zirconocene analogues, especially at a lower temperature. The molecular structures of complexes 4-9 have been determined by X-ray diffraction. The structure-activity relationships, especially the effects of the bridges of ansa-metallocene complexes, are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...