Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(23): 37591-37601, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808828

RESUMO

A new mechanism between the temperature sensitivity and the length ratio of PMMA coating to no-core fiber (NCF) is reported to realize an optical fiber temperature sensor with ultra-high sensitivity and compact size by PMMA-coated no-core fiber. By both theory and experiment, it is found that the sensitivity has a linear response to the length ratio of PMMA coating to NCF rather than the conventional viewpoint that it depends on the length of PMMA. Based on this conclusion and the high thermo-optic coefficient of PMMA, the temperature sensitivity is significantly enhanced as high as -9.582 nm/℃ through a simple, compact, and inexpensive sensor with 5 mm NCF and 3 mm PMMA coating. Our work opens a new avenue of a significant increase in the detection sensitivity of miniaturized fiber temperature sensors.

2.
Opt Lett ; 45(17): 4746-4749, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870847

RESUMO

A highly sensitive surface plasmon resonance fiber sensor for a vector magnetic field is proposed. The sensor is composed of a half-side gold-coated multimode-single-mode-multimode hetero-core fiber structure encapsulated with ferrofluids. The half-side gold film on the fiber not only produces the surface plasmon resonance, but also breaks the centrosymmetry of the light field in the fiber. Moreover, the magnetic-field-dependent anisotropy of the surrounding ferrofluids makes the sensor sensitive to both the intensity and direction of the magnetic field. Owing to the unique half-side coating configuration and the resulting enhancement of the evanescent field, the sensor can achieve a sensitivity as high as 1008 pm/Oe to the magnetic field intensity. The proposed sensor, possessing advantages such as high sensitivity, ease of fabrication, and low cost, has potential in the detection of a weak vector magnetic field.

3.
Opt Express ; 27(18): 25420-25427, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510414

RESUMO

In this paper, a fiber-optic temperature sensing system, based on surface plasmon resonance (SPR) and integrated with a smart-phone platform, is proposed and demonstrated. The sensing system is composed of a side-polished-fiber-based SPR sensor, which is illuminated by the LED flash from one end, and the output signals are recorded and processed by the camera and a designed application in the smart-phone. The sensing performance is evaluated by immersing the sensor in distilled water under different temperatures. Experimental results show that the measurement resolution of the proposed temperature sensor can reach 0.83°C in the range from 30 to 70°C, corresponding to a linear correlation coefficient of 0.9798. The low-cost and portable fiber optic SPR sensor based on a smart-phone platform has wide application potentials in the fields of health-care, environmental monitoring, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...