Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Microbiol ; 119(4): 471-491, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36760021

RESUMO

The chromatin structure is generally regulated by chromatin remodelers and histone modifiers, which affect DNA replication, repair, and levels of transcription. The first identified histone acetyltransferase was Hat1/KAT1, which belongs to lysine (K) acetyltransferases. The catalytic subunit Hat1 and the regulatory subunit Hat2 make up the core HAT1 complex. In this study, the results of tandem affinity purification and mass spectrometry and bimolecular fluorescence complementation proved that the Penicillium oxalicum PoHat1-Hat2 is the transcriptional cofactor of the sequence-specific transcription factor PoAmyR, a transcription activator essential for the transcription of amylase gene. ChIP-qPCR results demonstrated that the complex PoHat1-Hat2 is recruited by PoAmyR to the promoters of prominent amylase genes Poamy13A and Poamy15A and performs histone H4 lysine12 acetylation. The result of the yeast two-hybrid test indicated that PoHat2 is the subunit that directly interacts with PoAmyR. PoHat1-Hat2 acts as the molecular brake of the PoAmyR-regulating transcription of amylase genes. A putative model for amylase gene regulation by PoAmyR-Hat2-Hat1 was constructed. Our paper is the first report that the Hat1-Hat2 complex acts as a cofactor for sequence-specific TF to regulate gene expression and explains the mechanism of TF AmyR regulating amylase genes expression.


Assuntos
Proteínas Fúngicas , Histona Acetiltransferases , Penicillium , Fatores de Transcrição , Acetilação , Cromatina , Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Penicillium/metabolismo , Proteínas Fúngicas/metabolismo
2.
Mol Microbiol ; 117(5): 1002-1022, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35072962

RESUMO

The degradation of lignocellulosic biomass by cellulolytic enzymes is involved in the global carbon cycle. The hydrolysis of lignocellulosic biomass into fermentable sugars is potential as an excellent industrial resource to produce a variety of chemical products. The production of cellulolytic enzymes is regulated mainly at the transcriptional level in filamentous fungi. Transcription factor ClrB and the putative histone methyltransferase LaeA, are both necessary for the expression of cellulolytic genes. However, the mechanism by which transcription factors and methyltransferase coordinately regulate cellulolytic genes is still unknown. Here, we reveal a transcriptional regulatory mechanism involving Penicillium oxalicum transcription factor ClrB (PoClrB), complex Tup1-Cyc8, and putative histone methyltransferase LaeA (PoLaeA). As the transcription factor, PoClrB binds the targeted promoters of cellulolytic genes, recruits PoTup1-Cyc8 complex via direct interaction with PoTup1. PoTup1 interacts with PoCyc8 to form the coactivator complex PoTup1-Cyc8. Then, PoTup1 recruits putative histone methyltransferase PoLaeA to modify the chromatin structure of the upstream region of cellulolytic genes, thereby facilitating the binding of transcription machinery to activating the corresponding cellulolytic gene expression. Our results contribute to a better understanding of complex transcriptional regulation mechanisms of cellulolytic genes and will be valuable for lignocellulosic biorefining.


Assuntos
Regulação Fúngica da Expressão Gênica , Fatores de Transcrição , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Fungal Genet Biol ; 158: 103652, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920105

RESUMO

Fungi sense environmental signals and coordinate growth, development, and metabolism accordingly. Calcium-calmodulin-calcineurin signaling is a conserved cascade pathway in fungi. One of the most important downstream targets of this pathway is the transcription factor Crz1/CrzA, which plays an essential role in various cellular processes. The putative collaborators of Penicillium oxalicum CrzA (PoCrzA) were found, through tandem affinity purification followed by mass spectrometric analysis (TAP-MS). A total of 50 protein-protein interaction collaborators of PoCrzA were observed. Among them, some collaborators, such as the catalytic subunit of calcineurin (Cna1, calcineurin A), the regulatory catalytic subunit of calcineurin (Cnb1, calcineurin B), and a 14-3-3 protein Bmh1, which were previously reported in yeast, were identified. Some putative collaborators, including two karyopherins (exportin Los1 and importin Srp1), two kinases (Fus3 and Slt2p), and a general transcriptional corepressor (Cyc8), were also found. The CrzA deletion mutant ΔPocrzA exhibited slow hyphal growth, impaired conidiogenesis, and reduced extracellular cellulase synthesis. Phenotype and transcriptome analysis showed that PoCrzA regulated fungal development in a Flbs-BrlA-dependent manner and participated in cellulase synthesis by modulating cellulolytic gene expression. On the basis of the results of TAP-MS, transcriptome, and phenotypic analysis in P. oxalicum, our study was the first to draft the calcineurin-CrzA pathway in cellulolytic fungi.


Assuntos
Calcineurina , Penicillium , Calcineurina/genética , Calcineurina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Penicillium/genética , Penicillium/metabolismo , Fenótipo , Transcriptoma
4.
Biotechnol Biofuels ; 14(1): 244, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952627

RESUMO

BACKGROUND: Cellulolytic enzyme production in filamentous fungi requires a release from carbon catabolite repression (CCR). The protein CRE1/CreA (CRE = catabolite responsive element) is a key transcription factor (TF) that is involved in CCR and represses cellulolytic gene expression. CRE1/CreA represents the functional equivalent of Mig1p, an important Saccharomyces cerevisiae TF in CCR that exerts its repressive effect by recruiting a corepressor complex Tup1p-Cyc8p. Although it is known from S. cerevisiae that CRE1/CreA might repress gene expression via interacting with the corepressor complex Tup1-Cyc8, this mechanism is unconfirmed in other filamentous fungi, since the physical interaction has not yet been verified in these organisms. The precise mechanism on how CRE1/CreA achieves transcriptional repression after DNA binding remains unknown. RESULTS: The results from tandem affinity purification and bimolecular fluorescence complementation revealed a direct physical interaction between the TF CRE1/CreA and the complex Tup1-Cyc8 in the nucleus of cellulolytic fungus Trichoderma reesei and Penicillium oxalicum. Both fungi have the ability to secrete a complex arsenal of enzymes to synergistically degrade lignocellulosic materials. In P. oxalicum, the protein PoCyc8, a subunit of complex Tup1-Cyc8, interacts directly with TF PoCreA and histone H3 lysine 36 (H3K36) methyltransferase PoSet2 in the nucleus. The di-methylation level of H3K36 in the promoter of prominent cellulolytic genes (cellobiohydrolase-encoding gene Pocbh1/cel7A and endoglucanase-encoding gene Poegl1/cel7B) is positively correlated with the expression levels of TF PoCreA. Since the methylation of H3K36 was also demonstrated to be a repression marker of cellulolytic gene expression, it appears feasible that the cellulolytic genes are repressed via PoCreA-Tup1-Cyc8-Set2-mediated transcriptional repression. CONCLUSION: This study verifies the long-standing conjecture that the TF CRE1/CreA represses gene expression by interacting with the corepressor complex Tup1-Cyc8 in filamentous fungi. A reasonable explanation is proposed that PoCreA represses gene expression by recruiting complex PoTup1-Cyc8. Histone methyltransferase Set2, which methylates H3K36, is also involved in the regulatory network by interacting with PoCyc8. The findings contribute to the understanding of CCR mechanism in filamentous fungi and could aid in biotechnologically relevant enzyme production.

5.
Child Dev ; 92(5): 1906-1918, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34569057

RESUMO

Topological property (TP) is a basic geometric attribute of objects, which is preserved over continuous and one-to-one transformations and considered to be processed in early vision. This study investigated the global TP perception of 773 children aged 6-14, as compared to 179 adults. The results revealed that adults and children aged 10 or over show a TP priority trend in both central and peripheral vision, that is, less time is required to discriminate TP differences than non-TP differences. Children aged 6-8 show a TP priority trend for central stimuli, but not in their peripheral vision. The TP priority effect in peripheral vision does not emerge until age ˜10 years, and the development of central and peripheral vision seems to be different.


Assuntos
Visão Ocular , Percepção Visual , Adulto , Criança , Humanos
6.
Clinics (Sao Paulo) ; 76: e2502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495077

RESUMO

OBJECTIVES: Diagnosis and management of essential hypertension (EH) or type 2 diabetes mellitus (T2DM) by combining comprehensive treatment and classificatory diagnosis have been continuously improved. However, understanding the pathogenesis of EH patients with concomitant T2DM and subsequent treatment remain the major challenges owing to the lack of non-invasive biomarkers and information regarding the underlying mechanisms. METHODS: Herein, we collected 200 serum samples from EH and/or T2DM patients and healthy donors (N). Gene-expression profiling was conducted to identify candidate microRNAs with clinical significance. Then, a larger cohort of the aforementioned patients and 50 N were used to identify the correlation between the tumor suppressor miR-195-5p and EH and/or T2DM. The dual-luciferase reporter assay was used to explore the target genes of miR-195-5p. The suppressive effects of miR-195-5p on the 3'-UTR of the dopamine receptor D1 (DRD1) transcript in EH patients with concomitant T2DM were verified as well. RESULTS: Compared with that in other groups, serum miR-195-5p was highly downregulated in EH patients with concomitant T2DM. miR-195-5p overexpression efficiently suppressed DRD1 expression by binding to the two 3'-UTRs. Additionally, two single nucleotide polymorphisms, including 231T-A and 233C-G, in the miR-195-5p binding sites of the DRD1 3'-UTR were further identified. Collectively, we identified the potential clinical significance of DRD1 regulation by miR-195-5p in EH patients with concomitant T2DM. CONCLUSIONS: Our data suggested that miR-195-5p circulating in the peripheral blood served as a novel biomarker and therapeutic target for EH and T2DM, which could eventually help address major challenges during the diagnosis and treatment of EH and T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão Essencial , MicroRNAs , Receptores de Dopamina D1 , Biomarcadores , Diabetes Mellitus Tipo 2/genética , Hipertensão Essencial/genética , Humanos , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Receptores de Dopamina D1/genética
7.
Fungal Biol ; 125(1): 1-11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33317771

RESUMO

As the universal methyl donor for methylation reactions, S-adenosylmethionine (AdoMet) plays an indispensable role in most cellular metabolic processes. AdoMet is synthesized by AdoMet synthetase. We identified the only one AdoMet synthetase (PoSasA) in filamentous fungus Penicillium oxalicum. PoSasA was widely distributed in mycelium at different growth stages. The absence of PoSasA was lethal for P. oxalicum. The misregulation of the PoSasA encoding gene affected the synthesis of extracellular cellulolytic enzymes. The expression levels of cellobiohydrolase encoding gene cbh1/cel7A, ß-1-4 endoglucanase eg1/cel7B, and xylanase encoding gene xyn10A were remarkably downregulated as a result of decreased PosasA gene expression. The production of extracellular cellulases and hemicellulases was also reduced. By contrast, the overexpression of PosasA improved the production of extracellular cellulases and hemicellulases. A total of 133 putative interacting proteins with PoSasA were identified using tandem affinity purification and mass spectrometry. The results of functional enrichment on these proteins showed that they were mainly related to ATP binding, magnesium ion binding, and ATP synthetase activity. Several methyltransferases were also observed among these proteins. These results were consistent with the intrinsic feature of AdoMet synthetase. This work reveals the indispensable role of PoSasA in various biological processes.


Assuntos
Regulação Fúngica da Expressão Gênica , Metionina Adenosiltransferase , Viabilidade Microbiana , Penicillium , Celulases/genética , Celulases/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Viabilidade Microbiana/genética , Penicillium/enzimologia , Penicillium/genética
8.
Clinics ; 76: e2502, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1339695

RESUMO

OBJECTIVES: Diagnosis and management of essential hypertension (EH) or type 2 diabetes mellitus (T2DM) by combining comprehensive treatment and classificatory diagnosis have been continuously improved. However, understanding the pathogenesis of EH patients with concomitant T2DM and subsequent treatment remain the major challenges owing to the lack of non-invasive biomarkers and information regarding the underlying mechanisms. METHODS: Herein, we collected 200 serum samples from EH and/or T2DM patients and healthy donors (N). Gene-expression profiling was conducted to identify candidate microRNAs with clinical significance. Then, a larger cohort of the aforementioned patients and 50 N were used to identify the correlation between the tumor suppressor miR-195-5p and EH and/or T2DM. The dual-luciferase reporter assay was used to explore the target genes of miR-195-5p. The suppressive effects of miR-195-5p on the 3′-UTR of the dopamine receptor D1 (DRD1) transcript in EH patients with concomitant T2DM were verified as well. RESULTS: Compared with that in other groups, serum miR-195-5p was highly downregulated in EH patients with concomitant T2DM. miR-195-5p overexpression efficiently suppressed DRD1 expression by binding to the two 3′-UTRs. Additionally, two single nucleotide polymorphisms, including 231T-A and 233C-G, in the miR-195-5p binding sites of the DRD1 3′-UTR were further identified. Collectively, we identified the potential clinical significance of DRD1 regulation by miR-195-5p in EH patients with concomitant T2DM. CONCLUSIONS: Our data suggested that miR-195-5p circulating in the peripheral blood served as a novel biomarker and therapeutic target for EH and T2DM, which could eventually help address major challenges during the diagnosis and treatment of EH and T2DM.


Assuntos
Humanos , Receptores de Dopamina D1/genética , MicroRNAs/genética , Diabetes Mellitus Tipo 2/genética , Hipertensão Essencial/genética , Biomarcadores , Polimorfismo de Nucleotídeo Único
9.
Front Microbiol ; 10: 2566, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787956

RESUMO

Histone methylation is associated with transcription regulation, but its role for glycoside hydrolase (GH) biosynthesis is still poorly understood. We identified the histone H3 lysine 79 (H3K79)-specific methyltransferase PoDot1 in Penicillium oxalicum. PoDot1 affects conidiation by regulating the transcription of key regulators (BrlA, FlbC, and StuA) of asexual development and is required in normal hyphae septum and branch formation by regulating the transcription of five septin-encoding genes, namely, aspA, aspB, aspC, aspD, and aspE. Tandem affinity purification/mass spectrometry showed that PoDot1 has no direct interaction with transcription machinery, but it affects the expressions of extracellular GH genes extensively. The expression of genes (amy15A, amy13A, cel7A/cbh1, cel61A, chi18A, cel3A/bgl1, xyn10A, cel7B/eg1, cel5B/eg2, and cel6A/cbh2) that encode the top 10 GHs was remarkably downregulated by Podot1 deletion (ΔPodot1). Consistent with the decrease in gene transcription level, the activities of amylases and cellulases were significantly decreased in ΔPodot1 mutants in agar (solid) and fermentation (liquid) media. The repression of GH gene expressions caused by PoDot1 deletion was not mediated by key transcription factors, such as AmyR, ClrB, CreA, and XlnR, but was accompanied by defects in global demethylated H3K79 (H3K79me2) and trimethylated H3K79 (H3K79me3). The impairment of H3K79me2 on specific GH gene loci was observed due to PoDot1 deletion. The results implies that defects of H3K79 methylation is the key reason of the downregulated transcription level of GH-encoding genes and reveals the indispensable role of PoDot1 in extracellular GH biosynthesis.

10.
Biotechnol Biofuels ; 12: 198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452679

RESUMO

BACKGROUND: Enzymatic hydrolysis of lignocellulose by fungi is a key step in global carbon cycle and biomass utilization. Cellulolytic enzyme production is tightly controlled at a transcriptional level. Here, we investigated the roles of different histone lysine methylation modifications in regulating cellulolytic enzyme gene expression, as histone lysine methylation is an important process of chromatin regulation associated with gene transcription. RESULTS: PoSet1 and PoSet2 in Penicillium oxalicum, orthologs of Set1 and Set2 in budding yeast, were associated with the methylation of histone H3 lysine 4 (H3K4) and lysine 36 (H3K36). Cellulolytic enzyme production was extensively upregulated by the disruption of PoSet2, but was significantly downregulated by the disruption of PoSet1. We revealed that the activation of cellulolytic enzyme genes was accompanied by the increase of H3K4me3 signal, as well as the decrease of H3K36me1 and H3K36me3 signal on specific gene loci. The repression of cellulolytic enzyme genes was accompanied by the absence of global H3K4me1 and H3K4me2. An increase in the H3K4me3 signal by Poset2 disruption was eliminated by the further disruption of Poset1 and accompanied by the repressed cellulolytic enzyme genes. The active or repressed genes were not always associated with transcription factors. CONCLUSION: H3K4 methylation is an active marker of cellulolytic enzyme production, whereas H3K36 methylation is a marker of repression. A crosstalk occurs between H3K36 and H3K4 methylation, and PoSet2 negatively regulates cellulolytic enzyme production by antagonizing the PoSet1-H3K4me3 pathway. The balance of H3K4 and H3K36 methylation is required for the normal transcription of cellulolytic enzyme genes. These results extend our previous understanding that cellulolytic enzyme gene transcription is primarily controlled by transcription factors.

11.
Medicine (Baltimore) ; 97(43): e12931, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30412101

RESUMO

This study aims to investigate the correlation between controlled attenuation parameter (CAP) and metabolic syndrome (MetS) and its components in middle-aged and elderly nonalcoholic fatty liver disease (NAFLD) patients.Middle-aged and elderly patients with NAFLD, who visited our hospital from June 2016 to May 2017, were enrolled as study subjects, whereas middle-aged and elderly patients without liver disease were enrolled as controls in the same period. The prevalence of MetS, MetS components, and the different numbers of MetS components were compared among patients with different CAP values.As the CAP value increased, the prevalence of MetS, MetS components, and the different numbers of MetS components significantly increased. The CAP value was positively correlated with the prevalence of MetS, obesity, hypertriglyceridemia, hypertension, hyperglycemia, hyperuricemia, and the number of MetS components, and was negatively correlated with the prevalence of hypo-high-density-lipoprotein cholesterolemia.CAP values are closely correlated to MetS and its components in middle-aged and elder NAFLD patients. CAP may be an indicator of risk of MetS and the severity of metabolic disorders in middle-aged and elderly NAFLD patients.


Assuntos
Síndrome Metabólica/complicações , Hepatopatia Gordurosa não Alcoólica/complicações , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Hiperuricemia/complicações , Hiperuricemia/diagnóstico , Masculino , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/fisiopatologia , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Fatores de Risco , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Ultrassonografia/métodos
12.
Zhonghua Liu Xing Bing Xue Za Zhi ; 25(11): 986-8, 2004 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-15769336

RESUMO

OBJECTIVE: To evaluate the prevalence of Helicobacter pylori (H.pylori) resistance to metronidazole among three populations in Yunnan. METHODS: Susceptibilities to metronidazole among 109 H. pylori strains (33 H. pylori strains from Han, 31 H. pylori strains from Bai and 45 H. pylori strains from Naxi ethnic populations) were tested by Epsilometer test (E-test). RESULTS: In 109 H. pylori strains, the overall metronidazole resistance rate was 67.89%. There were no significant difference in the metronidazole resistant rates of H. pylori among Han, Bai, Naxi populations Yunnan in terms of the distribution on age and upper gastroduodenal diseases. In the facet of gender, metronidazole resistant rate of H. pylori was significantly lower in Han males than in females (chi2=5.304, P=0.027), but not seen in the Bai or Naxi peoples. CONCLUSION: Metronidazole resistance rate of H. pyloriin Yunnan was high, but no significant difference was found among Han, Bai, Naxi peoples in the province.


Assuntos
Farmacorresistência Bacteriana , Gastrite/microbiologia , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Metronidazol/uso terapêutico , Adulto , China/etnologia , Doença Crônica , Feminino , Humanos , Masculino , Metronidazol/farmacologia , Pessoa de Meia-Idade , Úlcera Péptica/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...