Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(6): 2478-2491, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342698

RESUMO

Temporal focusing multiphoton excitation microscopy (TFMPEM) enables fast widefield biotissue imaging with optical sectioning. However, under widefield illumination, the imaging performance is severely degraded by scattering effects, which induce signal crosstalk and a low signal-to-noise ratio in the detection process, particularly when imaging deep layers. Accordingly, the present study proposes a cross-modality learning-based neural network method for performing image registration and restoration. In the proposed method, the point-scanning multiphoton excitation microscopy images are registered to the TFMPEM images by an unsupervised U-Net model based on a global linear affine transformation process and local VoxelMorph registration network. A multi-stage 3D U-Net model with a cross-stage feature fusion mechanism and self-supervised attention module is then used to infer in-vitro fixed TFMPEM volumetric images. The experimental results obtained for in-vitro drosophila mushroom body (MB) images show that the proposed method improves the structure similarity index measures (SSIMs) of the TFMPEM images acquired with a 10-ms exposure time from 0.38 to 0.93 and 0.80 for shallow- and deep-layer images, respectively. A 3D U-Net model, pretrained on in-vitro images, is further trained using a small in-vivo MB image dataset. The transfer learning network improves the SSIMs of in-vivo drosophila MB images captured with a 1-ms exposure time to 0.97 and 0.94 for shallow and deep layers, respectively.

2.
Sci Rep ; 13(1): 161, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599927

RESUMO

A dual-resonant scanning multiphoton (DRSM) microscope incorporating a tunable acoustic gradient index of refraction lens with a resonant mirror is developed for high-speed volumetric imaging. In the proposed microscope, the pulse train signal of a femtosecond laser is used to trigger an embedded field programmable gate array to sample the multiphoton excited fluorescence signal at the rate of one pixel per laser pulse. It is shown that a frame rate of around 8000 Hz can be obtained in the x-z plane for an image region with a size of 256 × 80 pixels. Moreover, a volumetric imaging rate of over 30 Hz can be obtained for a large image volume of 343 × 343 × 120 µm3 with an image size of 256 × 256 × 80 voxels. Moreover, a volumetric imaging rate of over 30 Hz can be obtained for a large image volume of 256 × 256 × 80 voxels, which represents 343 × 343 × 120 µm3 in field-of-view. The rapid volumetric imaging rate eliminates the aliasing effect for observed temporal frequencies lower than 15 Hz. The practical feasibility of the DRSM microscope is demonstrated by observing the mushroom bodies of a drosophila brain and performing 3D dynamic observations of moving 10-µm fluorescent beads.


Assuntos
Lentes , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Ultrassonografia , Aumento da Imagem , Cintilografia
3.
Sci Rep ; 12(1): 10079, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710746

RESUMO

Temporal focusing-based multiphoton excitation microscopy (TFMPEM) just provides the advantage of widefield optical sectioning ability with axial resolution of several micrometers. However, under the plane excitation, the photons emitted from the molecules in turbid tissues undergo scattering, resulting in complicated background noise and an impaired widefield image quality. Accordingly, this study constructs a general and comprehensive numerical model of TFMPEM utilizing Fourier optics and performs simulations to determine the superior spatial frequency and orientation of the structured pattern which maximize the axial excitation confinement. It is shown experimentally that the optimized pattern minimizes the intensity of the out-of-focus signal, and hence improves the quality of the image reconstructed using the Hilbert transform (HT). However, the square-like reflection components on digital micromirror device leads to pattern residuals in the demodulated image when applying high spatial frequency of structured pattern. Accordingly, the HT is replaced with Hilbert-Huang transform (HHT) in order to sift out the low-frequency background noise and pattern residuals in the demodulation process. The experimental results obtained using a kidney tissue sample show that the HHT yields a significant improvement in the TFMPEM image quality.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Fótons , Técnicas Histológicas , Microscopia de Fluorescência , Microscopia de Fluorescência por Excitação Multifotônica/métodos
4.
Biomed Opt Express ; 13(12): 6273-6283, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36589554

RESUMO

A dual-resonant scanning multiphoton (DRSM) microscope incorporating a tunable acoustic gradient index of refraction lens and a resonant mirror is developed for rapid volumetric bioimaging. It is shown that the microscope achieves a volumetric imaging rate up to 31.25 volumes per second (vps) for a scanning volume of up to 200 × 200 × 100 µm3 with 256 × 256 × 128 voxels. However, the volumetric images have a severe negative signal-to-noise ratio (SNR) as a result of a large number of missing voxels for a large scanning volume and the presence of Lissajous patterning residuals. Thus, a modified three-dimensional (3D)-generator U-Net model trained using simulated microbead images is proposed and used to inpaint and denoise the images. The performance of the 3D U-Net model for bioimaging applications is enhanced by training the model with high-SNR in-vitro drosophila brain images captured using a conventional point scanning multiphoton microscope. The trained model shows the ability to produce clear in-vitro drosophila brain images at a rate of 31.25 vps with a SNR improvement of approximately 20 dB over the original images obtained by the DRSM microscope. The training convergence time of the modified U-Net model is just half that of a general 3D U-Net model. The model thus has significant potential for 3D in-vivo bioimaging transfer learning. Through the assistance of transfer learning, the model can be extended to the restoration of in-vivo drosophila brain images with a high image quality and a rapid training time.

5.
Biomed Opt Express ; 13(12): 6610-6620, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36589593

RESUMO

A temporal focusing multiphoton illumination (TFMI) method is proposed for achieving selective volume illumination (SVI) (i.e., illuminating only the volume of interest) in light-field microscopy (LFM). The proposed method minimizes the background noise of the LFM images and enhances the contrast, and thus improves the imaging quality. Three-dimensional (3D) volumetric imaging is achieved by reconstructing the LFM images using a phase-space deconvolution algorithm. The experimental results obtained using 100-nm fluorescent beads show that the proposed TFMI-LFM system achieves lateral and axial resolutions of 1.2 µm and 1.1 µm, respectively, at the focal plane. Furthermore, the TFMI-LFM system enables 3D images of the single lobe of the drosophila mushroom body with GFP biomarker (OK-107) to be reconstructed in a one-snapshot record.

6.
Sci Adv ; 5(10): eaay0001, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31693007

RESUMO

Motor learning involves reorganization of the primary motor cortex (M1). However, it remains unclear how the involvement of M1 in movement control changes during long-term learning. To address this, we trained mice in a forelimb-based motor task over months and performed optogenetic inactivation and two-photon calcium imaging in M1 during the long-term training. We found that M1 inactivation impaired the forelimb movements in the early and middle stages, but not in the late stage, indicating that the movements that initially required M1 became independent of M1. As previously shown, M1 population activity became more consistent across trials from the early to middle stage while task performance rapidly improved. However, from the middle to late stage, M1 population activity became again variable despite consistent expert behaviors. This later decline in activity consistency suggests dissociation between M1 and movements. These findings suggest that long-term motor learning can disengage M1 from movement control.


Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Animais , Feminino , Masculino , Camundongos , Análise e Desempenho de Tarefas
7.
Neuron ; 104(6): 1126-1140.e6, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31706697

RESUMO

The posterior parietal cortex (PPC) performs many functions, including decision making and movement control. It remains unknown which input and output pathways of PPC support different functions. We addressed this issue in mice, focusing on PPC neurons projecting to the dorsal striatum (PPC-STR) and the posterior secondary motor cortex (PPC-pM2). Projection-specific, retrograde labeling showed that PPC-STR and PPC-pM2 represent largely distinct subpopulations, with PPC-STR receiving stronger inputs from association areas and PPC-pM2 receiving stronger sensorimotor inputs. Two-photon calcium imaging during decision making revealed that the PPC-STR population encodes history-dependent choice bias more strongly than PPC-pM2 or general PPC populations. Furthermore, optogenetic inactivation of PPC-STR neurons or their terminals in STR decreased history-dependent bias, while inactivation of PPC-pM2 neurons altered movement kinematics. Therefore, PPC biases action selection through its STR projection while controlling movements through PPC-pM2 neurons. PPC may support multiple functions through parallel subpopulations, each with distinct input-output connectivity.


Assuntos
Tomada de Decisões/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Animais , Corpo Estriado/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/fisiologia
8.
J Biophotonics ; 11(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28464488

RESUMO

A developed temporal focusing-based multiphoton excitation microscope (TFMPEM) has a digital micromirror device (DMD) which is adopted not only as a blazed grating for light spatial dispersion but also for patterned illumination simultaneously. Herein, the TFMPEM has been extended to implement spatially modulated illumination at structured frequency and orientation to increase the beam coverage at the back-focal aperture of the objective lens. The axial excitation confinement (AEC) of TFMPEM can be condensed from 3.0 µm to 1.5 µm for a 50 % improvement. By using the TFMPEM with HiLo technique as two structured illuminations at the same spatial frequency but different orientation, reconstructed biotissue images according to the condensed AEC structured illumination are shown obviously superior in contrast and better scattering suppression. Picture: TPEF images of the eosin-stained mouse cerebellar cortex by conventional TFMPEM (left), and the TFMPEM with HiLo technique as 1.09 µm-1 spatially modulated illumination at 90° (center) and 0° (right) orientations.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Calibragem , Desenho de Equipamento , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação
9.
Biomed Opt Express ; 7(5): 1727-36, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27231617

RESUMO

Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination.

10.
Biomed Opt Express ; 5(8): 2526-36, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25136483

RESUMO

In this study, the light diffraction of temporal focusing multiphoton excitation microscopy (TFMPEM) and the excitation patterning of nonlinear structured-illumination microscopy (NSIM) can be simultaneously and accurately implemented via a single high-resolution digital micromirror device. The lateral and axial spatial resolutions of the TFMPEM are remarkably improved through the second-order NSIM and projected structured light, respectively. The experimental results demonstrate that the lateral and axial resolutions are enhanced from 397 nm to 168 nm (2.4-fold) and from 2.33 µm to 1.22 µm (1.9-fold), respectively, in full width at the half maximum. Furthermore, a three-dimensionally rendered image of a cytoskeleton cell featuring ~25 nm microtubules is improved, with other microtubules at a distance near the lateral resolution of 168 nm also able to be distinguished.

11.
Biomed Opt Express ; 5(6): 1768-77, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24940539

RESUMO

Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1µm fluorescent beads sealed in agarose gel at different depths is improved.

12.
Opt Lett ; 39(11): 3134-7, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24875995

RESUMO

This Letter presents an enhanced temporal focusing-based multiphoton excitation (MPE) microscope in which the conventional diffraction grating is replaced by a digital micromirror device (DMD). Experimental results from imaging a thin fluorescence film show that the 4.0 µm axial resolution of the microscope is comparable with that of a setup incorporating a 600 lines/mm grating; hence, the optical sectioning ability of the proposed setup is demonstrated. Similar to a grating, the DMD diffracts illuminating light frequencies for temporal focusing; additionally, it generates arbitrary patterns. Since the DMD is placed on the image-conjugate plane of the objective lens' focal plane, the MPE pattern can be projected on the focal plane precisely.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Desenho de Equipamento , Lentes , Dispositivos Ópticos , Fenômenos Ópticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...