Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 41(1): 166-172, 2020 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854917

RESUMO

We use 84 rainfall samples collected during June to September 2017 from the Dongkemadi basin, source region of the Yangtze River, China, to analyze the characteristics and influencing factors of stable isotopes in groundwater, and further discuss the groundwater recharge sources. The results showed that the range of groundwater δ18 O values in this permafrost region varied from -15.3‰ to -12.5‰ (mean -14.0‰). The range of δD values in groundwater varied from -108.9‰ to -91.7‰ (mean -100.2‰). Compared with local atmospheric precipitation, groundwater isotopes were relatively enriched. The slope and intercept of the groundwater line (GL) in the study area were both lower than of those of the global and local meteoric water lines (GMWL and LMWL), thus indicating that groundwater in the study area was subjected to evaporation during rainfall recharge of groundwater. The d-excess values of groundwater varied from 4.9‰ to 25.0‰ (mean 11.6‰), which was close to the average d-excess value determined for global average rainfall (10‰), but lower than that of rainfall in the study area (15.1‰). The influencing factors on the composition and variation of groundwater isotopes were different in different periods. The permafrost active layer was relatively thin during periods of increasing air temperature, and groundwater isotopes were significantly affected by air temperature. A temperature decrease during the latter part of the sampling period, when the thickness of the permafrost active layer was still increasing, further increased the retention time of infiltrating rainfall in the soil, thereby eventually leading to evaporation that strengthened the enrichment of heavy isotopes in the groundwater. According to the topographic characteristics of the Dongkemadi basin, the isotopic characteristics of the groundwater, and the factors influencing the isotopic composition, we conclude that rainfall was the main source of groundwater recharge. The results of this study provide a scientific basis for studying water cycle processes in the permafrost regions of the source region of the Yangtze River.

2.
Huan Jing Ke Xue ; 40(6): 2615-2623, 2019 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854652

RESUMO

Based on the stable isotopes of 73 precipitation samples continuously collected from May to October 2014 and related meteorological statistics in the Dongkemaldi Basin, the characteristics of δD, δ18O, and d-excess of precipitation, as well as the correlations between δ18O and the rainfall amount and air temperature were analyzed. The moisture sources were tracked by the HYSPLIT model to further estimate the contribution of different water vapor sources to the rainfall amount. The results showed that the range of δ18O and δD values varied from -26.5‰ to 1.9‰ and -195.2‰ to 34.0‰, respectively; meanwhile, the δ18O and δD values in precipitation fluctuated greatly with time in response to water vapor transport from different moisture sources of the Qinghai-Tibet Plateau. The slope and intercept of the Local Meteoric Water Line (LMWL) were both higher than those of the Global Meteoric Water Line (GMWL) and close to the LMWL in the northern area of the Qinghai-Tibet Plateau. The relationship between δ18O and δD in different precipitation types showed significant differences, which were mainly related to the source of water vapor and meteorological conditions during the process of precipitation formation. Because of the influence of local evaporation and the transport process of water vapor, the d-excess values of atmospheric precipitation were relatively large; the δ18O in precipitation had a significant amount effect, but had no temperature effect, thus indicating that the rainfall amount was more effective in controlling the stable isotope content of atmospheric precipitation than temperature. The modeled trajectory of vapor sources showed that water vapor of precipitation was mainly derived from the marine vapor carried by the southwest monsoon, local moisture, and the westerly water vapor, and their contributions to the rainfall amount were 43%, 36%, and 21%, respectively. The results of this study can contribute to further understanding of the atmospheric circulation characteristics and water cycle process of the Dongkemadi basin in the headwaters of the Yangtze River.

3.
Huan Jing Ke Xue ; 40(10): 4431-4439, 2019 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854810

RESUMO

Using 64 precipitation samples collected from June to September 2013 in the Dongkemadi Basin in the source region of the Yangtze River, the pH, conductivity, and main ionic concentration characteristics of precipitation were analyzed. The main ionic sources of precipitation and their relationships with atmospheric circulation were examined using factor analysis, correlation analysis, enrichment factor analysis, and backward trajectory analysis. The results showed that the range of precipitation pH values varied from 5.26 to 9.25 with a weighted average of 6.70, and conductivity ranged from 0.23 to 28.70 µS·cm-1 with a weighted average of 3.45 µS·cm-1. The conductivity of precipitation was lower than for the Mt. Waliguan basin (China Global Atmosphere Watch baseline observatory). The total ionic concentrations in the precipitation ranged from 7.0 to 376.9 µeq·L-1 with a weighted average of 40.8 µeq·L-1. The ranked order of ionic concentrations was HCO3- > NH4+ > Ca2+ > NO3- > SO42- > Na+ > Cl- > K+ > Mg2+. HCO3-, NH4+,Ca2+, and NO3- were the dominant ions, which accounted for 74.75% of the total ionic concentration. Fractional acidity (FA) analysis showed that 97.8% of the precipitation acidity was neutralized by alkaline constituents. Neutral factor (NF) analysis indicated that NH4+ and Ca2+ were the dominant neutralization constituents in the precipitation. The precipitation ions in this study area were mainly derived from terrestrial material, while input from marine sources was relatively low. Backward trajectory analysis revealed that the total ionic concentrations varied significantly between the different sources, which followed the order of local sources>westerly sources>monsoon sources. This indicates that different atmospheric circulation conditions and air mass sources have a significant influence on the chemical composition of precipitation in this area. To some extent, the chemical characteristics of precipitation could reflect the air quality and background values for remote areas due to the limited effect of human activities. The results of this study provide a scientific basis for the protection of water quality and the assessment of the impact of human activities on the atmospheric environment in the source region of the Yangtze River.

4.
Huan Jing Ke Xue ; 36(8): 2827-32, 2015 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-26592009

RESUMO

Snowpit samples of three glaciers (Laohugou NO. 12 Glacier (LHG), Small Dongkemadi Glacier on Mount Tanggula (TGL) and East Ronghuk Glacier on Mount Everest (ZF)) in the Tibetan Plateau were collected. Concentrations of DOC and major ions were analyzed. The results showed that average DOC concentrations of the snowpits of LHG, TGL and ZF were (250.30 +/- 157.10), (216.92 +/- 142.82) and (152.50 +/- 56.11) microg x L(-1), respectively. DOC of TGL and ZF accounted for large parts of total values of DOC and ions. Correspondingly, DOC of LHG accounted for small part (only 5%), because LHG was located at north China and intensively influenced by natural mineral dust, which caused high concentrations of Ca2+ (the highest value could reach 5299.18 microg x L(-1)) and consequently low percentage of DOC of snowpit samples. Correlation and PCA analyses were used to study the sources of DOC. DOC was significantly correlated with Ca2+, Mg2+, K+ and SO4(2-). Additionally, PCA further indicated that the main potential source of DOC was the natural source of mineral dust. Meanwhile, anthropogenic pollutants (e.g., biomass, fossil combustion and agricultural related pollutants) could also not be ignored. Moreover, the carbon depositional fluxes of three snowpits were roughly estimated, and the values of LHG, TGL and ZF snowpits were 189.23, 132.76 and 128.44 mg (m2 x a)(-1), respectively, which played a significant role in the carbon cycle in this region and was also helpful for the study of glaciers fluctuation.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Camada de Gelo/química , Biomassa , Ciclo do Carbono , Íons , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...