Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234082

RESUMO

To explore the effect of different emulsifier contents on the stability performance of biomass-emulsified asphalt, three types of emulsified asphalt with 1%, 3%, and 5% anionic emulsifiers were prepared and analyzed by molecular dynamics simulation and macroscopic experiments. Firstly, we used molecular simulation software (Material Studio, MS) to construct a model of biomass-emulsified asphalt with different emulsifier contents and analyzed the microscopic mechanism of the emulsifier to improve the stability of the emulsified asphalt by the radial distribution function, interaction energy, interfacial layer thickness, and solubility parameters of the emulsified asphalt system with different emulsifier contents. The results were validated by macro and micro tests including storage stability, particle size determination, and infrared spectroscopy. The results show that at low emulsifier contents, the emulsifier can reduce the interfacial tension between the oil-water interface and expand the transition region between the two phases (interfacial layer thickness), which will prevent interparticle agglomeration and reduce the emulsion particle size, thus reducing the settling rate and ensuring the stability of the emulsion. When the emulsifier content is further increased beyond the critical micelle concentration, the emulsifiers will agglomerate with each other and show larger peaks in the radial distribution function, and the phenomenon of emulsifier agglomeration will appear in the five-day storage stability test, resulting in a corresponding decrease in the proximity of the infrared absorption peak area ratio in the same wavelength band of the upper and lower layers of the biomass-emulsified asphalt, and the emulsion stability decreases instead.

2.
Materials (Basel) ; 16(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614702

RESUMO

In order to study the mechanical properties of graded crushed stone, the discrete element method is used to simulate the CBR test of graded crushed stone. Aiming at the composition structure of graded crushed stone material, the PFC3D simulation software is used to construct the test model, and the process of constructing the virtual specimen model of the graded crushed stone discrete element model is discussed in detail. A servo mechanism is used to control the speed of the wall in the software, so as to control the virtual confining pressure imposed on graded crushed stone by the wall and simulate the real CBR test environment. The micro-parameter calibration of the virtual test is carried out by comparing the indoor and virtual CBR specimens of a single particle size specimen and three groups of graded crushed stone specimens. The comparison result shows that the stress-strain characteristics of the graded crushed rock obtained by the discrete element simulation during the uniaxial penetration process have a high degree of similarity, which can verify the accuracy of the model establishment. With the increase in the penetration depth, the penetration force of the aggregates of various particle sizes gradually increases, and the penetration force and the penetration depth are basically linear, and when the particle size is greater than 9.5 mm, the increase in particle size has little effect on the CBR test results. Under the certain conditions, the contact stiffness of graded crushed stone particles with particle sizes of 4.75 mm, 9.5 mm, 13.2 mm, 16 mm, and 19 mm should be 0.88 × 107 (N/m), 0.98 × 107 (N/m), 1.10 × 107 (N/m), 1.25 × 107 (N/m), and 2.05 × 107 (N/m), respectively. The recommended value of the contact stiffness of the small spherical particles increases with the increase in the particle size. This model can provide a basis for studying the micromechanical state of graded crushed stone and physical mechanics tests.

3.
Sci Rep ; 10(1): 21297, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277578

RESUMO

With global warming, the carbon pool in the degradation zone of permafrost around the Arctic will gradually be disturbed and may enter the atmosphere in the form of released methane gas, becoming an important factor of environmental change in permafrost areas. We selected the northwestern section of the Xiao Xing'an Mountains in China as the study area, located in the degradation zone on the southern margin of the permafrost region in Eurasia, and set up multiple study monitoring areas equipped with methane concentration sensors, air temperature sensors, pore water pressure sensors and soil temperature sensors for long-term monitoring of data changes using the high-density electrical method, ground penetrating radar and on-site drilling to survey the distribution of frozen soil and geological conditions in the study area, combined with remote sensing images of Sentinel-2 L1C and unmanned aerial vehicle photographs and three-dimensional image reconstruction, analysis of fire activities and related geological environmental factors. The results show that since 2004, the permafrost thickness of the marsh wetland in the study area has gradually reduced and the degradation rate obviously accelerated; the organic matter and methane hydrate (metastable methane hydrate and stable methane hydrate) stored in the permafrost under the marsh wetland are gradually entering the atmosphere in the form of methane gas. Methane emissions show seasonal changes, and the annual methane emissions can be divided into three main stages, including a high-concentration short-term emission stage (March to May), a higher-concentration long-term stable emission stage (June to August) and a higher-concentration short-term emission stage (September to November); there is a certain correlation between the change in atmospheric methane concentration and the change in atmospheric pressure and pore water pressure. From March to May every year (high-concentration short-term emission stage), with snow melting, the air humidity reaches an annual low value, and the surface methane concentration reaches an annual high value. The high concentration of methane gas entering the surface in this stage is expected to increase the risk of wildfire in the permafrost degradation area in two ways (increasing the regional air temperature and self-combustion), which may be an important factor that leads to a seasonal wildfire frequency difference in the permafrost zone of Northeast China and Southeast Siberia, with the peak in spring and autumn and the monthly maximum in spring. The increase in the frequency of wildfires is projected to further generate positive feedback on climate change by affecting soil microorganisms and soil structure. Southeastern Siberia and northeastern China, which are on the southern boundary of the permafrost region of Eurasia, need to be targeted to establish fire warning and management mechanisms to effectively reduce the risk of wildfires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...