Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402000, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738693

RESUMO

The disparity between growth substrates and application-specific substrates can be mediated by reliable graphene transfer, the lack of which currently strongly hinders the graphene applications. Conventionally, the removal of soft polymers, that support the graphene during the transfer, would contaminate graphene surface, produce cracks, and leave unprotected graphene surface sensitive to airborne contaminations. In this work, it is found that polyacrylonitrile (PAN) can function as polymer medium for transferring wafer-size graphene, and encapsulating layer to deliver high-performance graphene devices. Therefore, PAN, that is compatible with device fabrication, does not need to be removed for subsequent applications. The crack-free transfer of 4 in. graphene onto SiO2/Si wafers, and the wafer-scale fabrication of graphene-based field-effect transistor arrays with no observed clear doping, uniformly high carrier mobility (≈11 000 cm2 V-1 s-1), and long-term stability at room temperature, are achieved. This work presents new concept for designing the transfer process of 2D materials, in which multifunctional polymer can be retained, and offers a reliable method for fabricating wafer-scale devices of 2D materials with outstanding performance.

2.
Nanoscale ; 16(16): 7862-7873, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38568087

RESUMO

Recent years have witnessed advances in chemical vapor deposition growth of graphene films on metal foils with fine scalability and thickness controllability. However, challenges for obtaining wrinkle-free, defect-free and large-area uniformity remain to be tackled. In addition, the real commercial applications of graphene films still require industrially compatible transfer techniques with reliable performance of transferred graphene, excellent production capacity, and suitable cost. Transferred graphene films, particularly with a large area, still suffer from the presence of transfer-related cracks, wrinkles and contaminants, which would strongly deteriorate the quality and uniformity of transferred graphene films. Potential applications of graphene films include moisture barrier films, transparent conductive films, electromagnetic shielding films, and optical communications; such applications call different requirements for the performance of transferred graphene, which, in turn, determine the suitable transfer techniques. Besides the reliable transfer process, automatic machines should be well developed for the future batch transfer of graphene films, ensuring the repeatability and scalability. This mini-review provides a summary of recent advances in the transfer of graphene films and offers a perspective for future directions of transfer techniques that are compatible for industrial batch transfer.

3.
Adv Mater ; 36(15): e2308950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288661

RESUMO

The real applications of chemical vapor deposition (CVD)-grown graphene films require the reliable techniques for transferring graphene from growth substrates onto application-specific substrates. The transfer approaches that avoid the use of organic solvents, etchants, and strong bases are compatible with industrial batch processing, in which graphene transfer should be conducted by dry exfoliation and lamination. However, all-dry transfer of graphene remains unachievable owing to the difficulty in precisely controlling interfacial adhesion to enable the crack- and contamination-free transfer. Herein, through controllable crosslinking of transfer medium polymer, the adhesion is successfully tuned between the polymer and graphene for all-dry transfer of graphene wafers. Stronger adhesion enables crack-free peeling of the graphene from growth substrates, while reduced adhesion facilitates the exfoliation of polymer from graphene surface leaving an ultraclean surface. This work provides an industrially compatible approach for transferring 2D materials, key for their future applications, and offers a route for tuning the interfacial adhesion that would allow for the transfer-enabled fabrication of van der Waals heterostructures.

4.
Adv Mater ; : e2308802, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878366

RESUMO

Single-crystal graphene (SCG) wafers are needed to enable mass-electronics and optoelectronics owing to their excellent properties and compatibility with silicon-based technology. Controlled synthesis of high-quality SCG wafers can be done exploiting single-crystal Cu(111) substrates as epitaxial growth substrates recently. However, current Cu(111) films prepared by magnetron sputtering on single-crystal sapphire wafers still suffer from in-plane twin boundaries, which degrade the SCG chemical vapor deposition. Here, it is shown how to eliminate twin boundaries on Cu and achieve 4 in. Cu(111) wafers with ≈95% crystallinity. The introduction of a temperature gradient on Cu films with designed texture during annealing drives abnormal grain growth across the whole Cu wafer. In-plane twin boundaries are eliminated via migration of out-of-plane grain boundaries. SCG wafers grown on the resulting single-crystal Cu(111) substrates exhibit improved crystallinity with >97% aligned graphene domains. As-synthesized SCG wafers exhibit an average carrier mobility up to 7284 cm2 V-1 s-1 at room temperature from 103 devices and a uniform sheet resistance with only 5% deviation in 4 in. region.

5.
Nano Lett ; 23(16): 7716-7724, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37539976

RESUMO

Graphene films that can theoretically block almost all molecules have emerged as promising candidate materials for moisture barrier films in the applications of organic photonic devices and gas storage. However, the current barrier performance of graphene films does not reach the ideal value. Here, we reveal that the interlayer distance of the large-area stacked multilayer graphene is the key factor that suppresses water permeation. We show that by minimizing the gap between the two monolayers, the water vapor transmission rate of double-layer graphene can be as low as 5 × 10-3 g/(m2 d) over an A4-sized region. The high barrier performance was achieved by the absence of interfacial contamination and conformal contact between graphene layers during layer-by-layer transfer. Our work reveals the moisture permeation mechanism through graphene layers, and with this approach, we can tailor the interlayer coupling of manually stacked two-dimensional materials for new physics and applications.

6.
Adv Mater ; 35(29): e2300621, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37027890

RESUMO

Recently, scalable production of large-area graphene films on metal foils with promising qualities is successfully achieved by eliminating grain boundaries, wrinkles, and adlayers. The transfer of graphene from growth metal substrates onto functional substrates remains one inescapable obstacle on the road to the real commercial applications of chemical vaport deposition (CVD) graphene films. Current transfer methods still require time-consuming chemical reactions, which hinders its mass production, and produces cracks and contamination that strongly impede performance reproducibility. Therefore, graphene transfer techniques with fine intactness and cleanness of transferred graphene, and improved production efficiency would be ideal for the mass production of graphene films on destination substrates. Herein, through the engineering of interfacial forces enabled by sophisticated design of transfer medium, the crack-free and clean transfer of 4-inch-sized graphene wafers onto silicon wafers within only 15 min is realized. The reported transfer method is an important leap over the long-lasting obstacle of the batch-scale graphene transfer without degrading the quality of graphene, bringing the graphene products close to the real applications.

7.
Nat Commun ; 13(1): 4409, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906212

RESUMO

The availability of graphene and other two-dimensional (2D) materials on a wide range of substrates forms the basis for large-area applications, such as graphene integration with silicon-based technologies, which requires graphene on silicon with outperforming carrier mobilities. However, 2D materials were only produced on limited archetypal substrates by chemical vapor deposition approaches. Reliable after-growth transfer techniques, that do not produce cracks, contamination, and wrinkles, are critical for layering 2D materials onto arbitrary substrates. Here we show that, by incorporating oxhydryl groups-containing volatile molecules, the supporting films can be deformed under heat to achieve a controllable conformal contact, enabling the large-area transfer of 2D films without cracks, contamination, and wrinkles. The resulting conformity with enhanced adhesion facilitates the direct delamination of supporting films from graphene, providing ultraclean surfaces and carrier mobilities up to 1,420,000 cm2 V-1 s-1 at 4 K.

8.
Nat Mater ; 20(8): 1113-1120, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33859384

RESUMO

Metastable 1T'-phase transition metal dichalcogenides (1T'-TMDs) with semi-metallic natures have attracted increasing interest owing to their uniquely distorted structures and fascinating phase-dependent physicochemical properties. However, the synthesis of high-quality metastable 1T'-TMD crystals, especially for the group VIB TMDs, remains a challenge. Here, we report a general synthetic method for the large-scale preparation of metastable 1T'-phase group VIB TMDs, including WS2, WSe2, MoS2, MoSe2, WS2xSe2(1-x) and MoS2xSe2(1-x). We solve the crystal structures of 1T'-WS2, -WSe2, -MoS2 and -MoSe2 with single-crystal X-ray diffraction. The as-prepared 1T'-WS2 exhibits thickness-dependent intrinsic superconductivity, showing critical transition temperatures of 8.6 K for the thickness of 90.1 nm and 5.7 K for the single layer, which we attribute to the high intrinsic carrier concentration and the semi-metallic nature of 1T'-WS2. This synthesis method will allow a more systematic investigation of the intrinsic properties of metastable TMDs.

9.
Adv Mater ; 32(1): e1903826, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31566269

RESUMO

The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface areas and layer structures benefiting fast ion transport. The typical methods for the preparation of TMDs and TMD-based nanohybrids are first summarized. Then, in order to improve the electrochemical performance of various kinds of rechargeable batteries, such as lithium-ion batteries, lithium-sulfur batteries, sodium-ion batteries, and other types of emerging batteries, the strategies for the design and fabrication of layered TMD-based electrode materials are discussed. Furthermore, the applications of layered TMD-based nanomaterials in supercapacitors, especially in untraditional supercapacitors, are presented. Finally, the existing challenges and promising future research directions in this field are proposed.

10.
ACS Nano ; 13(12): 14329-14336, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31774269

RESUMO

Recently, crystal-phase engineering has been emerging as a promising strategy to tune the physicochemical properties of noble metal catalysts and further improve their catalytic performance. However, the synthesis of noble metal catalysts with an unconventional crystal phase as well as desired composition and morphology still remains a great challenge. Herein, a series of PdM (M = Zn, Cd, ZnCd) nanosheets (NSs) with thickness less than 5 nm have been synthesized via a facile one-pot wet-chemical method. In particular, different from the conventional face-centered cubic (fcc) phase, PdM NSs possess an unconventional face-centered tetragonal (fct) phase. As a proof-of-concept application, the fct PdZn NSs exhibit significantly enhanced mass activity and stability in ethanol oxidation reaction, compared to the pure Pd NSs and commercial Pd black catalyst.

11.
Adv Mater ; 31(17): e1808249, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30856299

RESUMO

Solar-thermal water evaporation, as a promising method for clean water production, has attracted increasing attention. However, solar water evaporators that exhibit both high water vapor generation ability and anti-oil-fouling ability have not been reported. Here, a unique metal-organic-framework-based hierarchical structure, referred to as MOF-based hierarchical structure (MHS), is rationally designed and prepared, which simultaneously displays a high solar absorption and a superhydrophilic and underwater superoleophobic surface property. As a proof-of-concept application, a device prepared from the MHS can achieve a high solar-thermal water evaporation rate of 1.50 kg m-2 h-1 under 1 sun illumination. Importantly, the MHS also possesses an excellent anti-oil-fouling property, ensuring its superior water evaporation performance even in oil-contaminated water. The high solar-thermal water evaporation rate and anti-oil-fouling property make the MHS a promising material for the solar-thermal water production.

12.
J Am Chem Soc ; 140(27): 8563-8568, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29870234

RESUMO

As a source of clean energy, a reliable hydrogen evolution reaction (HER) requires robust and highly efficient catalysts. Here, by combining chemical vapor transport and Li-intercalation, we have prepared a series of 1T'-phase ReS2 xSe2(1- x) ( x = 0-1) nanodots to achieve high-performance HER in acid medium. Among them, the 1T'-phase ReSSe nanodot exhibits the highest hydrogen evolution activity, with a Tafel slope of 50.1 mV dec-1 and a low overpotential of 84 mV at current density of 10 mA cm-2. The excellent hydrogen evolution activity is attributed to the optimal hydrogen absorption energy of the active site induced by the asymmetric S vacancy in the highly asymmetric 1T' crystal structure.

13.
Molecules ; 20(10): 18847-55, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26501249

RESUMO

Amine-functionalized ZnO nanosheets were prepared through a one-step hydrothermal method by using monoethanolamine, which has a hydroxyl group, for covalent attachment on ZnO and a primary amine group to supply the amine-functionalization. We demonstrate that the terminal amine groups on ZnO surfaces substantially increase the capability of CO2 capture via chemisorption, resulting in effective CO2 activation. As a result, the photogenerated electrons from excited ZnO can more readily reduce the surface-activated CO2, which thereby enhances the activity for photocatalytic CO2 reduction.


Assuntos
Dióxido de Carbono/isolamento & purificação , Nanoestruturas/química , Óxido de Zinco/química , Adsorção , Aminas/química , Dióxido de Carbono/química , Catálise , Efeito Estufa , Oxirredução , Processos Fotoquímicos , Energia Solar , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...