Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611506

RESUMO

A newly documented pathotype 5 of the soil-borne fungus Sporisorium reilianum, causing head smut in sorghum, was tested against 153 unexplored Senegalese sorghum accessions. Among the 153 sorghum accessions tested, 63 (41%) exhibited complete resistance, showing no signs of infection by the fungus. The remaining 90 accessions (59%) displayed varying degrees of susceptibility. Sorghum responses against S. reilianum were explored to analyze the potential link with previously known seed morphology-related traits and new phenotype data from 59 lines for seed weight. A genome-wide association study (GWAS) screened 297,876 SNPs and identified highly significant associations (p < 1 × 10-5) with head smut resistance in sorghum. By mapping these significant SNPs to the reference genome, this study revealed 35 novel candidate defense genes potentially involved in disease resistance.

2.
Plant Genome ; 17(2): e20448, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602082

RESUMO

The gene expression landscape across different tissues and developmental stages reflects their biological functions and evolutionary patterns. Integrative and comprehensive analyses of all transcriptomic data in an organism are instrumental to obtaining a comprehensive picture of gene expression landscape. Such studies are still very limited in sorghum, which limits the discovery of the genetic basis underlying complex agricultural traits in sorghum. We characterized the genome-wide expression landscape for sorghum using 873 RNA-sequencing (RNA-seq) datasets representing 19 tissues. Our integrative analysis of these RNA-seq data provides the most comprehensive transcriptomic atlas for sorghum, which will be valuable for the sorghum research community for functional characterizations of sorghum genes. Based on the transcriptome atlas, we identified 595 housekeeping genes (HKGs) and 2080 tissue-specific expression genes (TEGs) for the 19 tissues. We identified different gene features between HKGs and TEGs, and we found that HKGs have experienced stronger selective constraints than TEGs. Furthermore, we built a transcriptome-wide co-expression network (TW-CEN) comprising 35 modules with each module enriched in specific Gene Ontology terms. High-connectivity genes in TW-CEN tend to express at high levels while undergoing intensive selective pressure. We also built global and seed-preferential co-expression networks of starch synthesis pathways, which indicated that photosynthesis and microtubule-based movement play important roles in starch synthesis. The global transcriptome atlas of sorghum generated by this study provides an important functional genomics resource for trait discovery and insight into starch synthesis regulation in sorghum.


Assuntos
Regulação da Expressão Gênica de Plantas , Sorghum , Amido , Transcriptoma , Sorghum/genética , Sorghum/metabolismo , Amido/biossíntese , Amido/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
3.
Plants (Basel) ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38475461

RESUMO

Hundred-seed weight (HSW) and reproductive period length (RPL) are two major agronomic traits critical for soybean production and adaptation. However, both traits are quantitatively controlled by multiple genes that have yet to be comprehensively elucidated due to the lack of major genes; thereby, the genetic basis is largely unknown. In the present study, we conducted comprehensive genome-wide association analyses (GWAS) of HSW and RPL with multiple sets of accessions that were phenotyped across different environments. The large-scale analysis led to the identification of sixty-one and seventy-four significant QTLs for HSW and RPL, respectively. An ortholog-based search analysis prioritized the most promising candidate genes for the QTLs, including nine genes (TTG2, BZR1, BRI1, ANT, KLU, EOD1/BB, GPA1, ABA2, and ABI5) for HSW QTLs and nine genes (such as AGL8, AGL9, TOC1, and COL4) and six known soybean flowering time genes (E2, E3, E4, Tof11, Tof12, and FT2b) for RPL QTLs. We also demonstrated that some QTLs were targeted during domestication to drive the artificial selection of both traits towards human-favored traits. Local adaptation likely contributes to the increased genomic diversity of the QTLs underlying RPL. The results provide additional insight into the genetic basis of HSW and RPL and prioritize a valuable resource of candidate genes that merits further investigation to reveal the complex molecular mechanism and facilitate soybean improvement.

4.
Genes (Basel) ; 14(12)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136943

RESUMO

Feed costs can amount to 75 percent of the total overhead cost of raising cows for milk production. Meanwhile, the livestock industry is considered a significant contributor to global climate change due to the production of greenhouse gas emissions, such as methane. Indeed, the genetic basis of feed efficiency (FE) is of great interest to the animal research community. Here, we explore the epigenetic basis of FE to provide base knowledge for the development of genomic tools to improve FE in cattle. The methylation level of 37,554 CpG sites was quantified using a mammalian methylation array (HorvathMammalMethylChip40) for 48 Holstein cows with extreme residual feed intake (RFI). We identified 421 CpG sites related to 287 genes that were associated with RFI, several of which were previously associated with feeding or digestion issues. Activator of transcription and developmental regulation (AUTS2) is associated with digestive disorders in humans, while glycerol-3-phosphate dehydrogenase 2 (GPD2) encodes a protein on the inner mitochondrial membrane, which can regulate glucose utilization and fatty acid and triglyceride synthesis. The extensive expression and co-expression of these genes across diverse tissues indicate the complex regulation of FE in cattle. Our study provides insight into the epigenetic basis of RFI and gene targets to improve FE in dairy cattle.


Assuntos
Metilação de DNA , Lactação , Feminino , Humanos , Bovinos/genética , Animais , Lactação/fisiologia , Ração Animal/análise , Ingestão de Alimentos/genética , Genoma , Mamíferos/genética
5.
Eur Radiol ; 33(6): 4453-4463, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36502461

RESUMO

OBJECTIVES: The differentiation of Warthin tumor and pleomorphic adenoma before treatment is crucial for clinical strategies. The aim of this study was to develop and test a T2-weighted-based radiomics model for differentiating pleomorphic adenoma from Warthin tumor of the parotid gland. METHODS: A total of 117 patients, including 61 cases of Warthin tumor and 56 cases of pleomorphic adenoma, were retrospectively enrolled from two centers between January 2010 and June 2022. The training set included 82 cases, and the validation set included 35 cases. From T2-weighted images, 971 radiomics features were extracted. Seven radiomics features remained after a two-step selection process. We used the seven radiomics features and clinical factors through multivariable logistic regression to build radiomics and clinical models, respectively. A radiomics-clinical model was also built that combined the independent clinical predictors with the radiomics features. Through ROC curves, the three models were evaluated and compared. RESULTS: In the radiomics model, AUCs were 0.826 and 0.796 in training and validation sets, respectively. In the clinical model, the AUCs were 0.923 and 0.926 in the training and validation sets, respectively. Decision curve analysis revealed that the radiomics-clinical model had the best diagnostic performance for distinguishing Warthin tumor from pleomorphic adenoma of the parotid gland (AUC = 0.962 and 0.934 for the training and validation sets, respectively). CONCLUSION: The radiomics-clinical model performed well in differentiating pleomorphic adenoma from Warthin tumor of the parotid gland. KEY POINTS: • The clinical model outperformed the radiomics model in distinguishing pleomorphic adenoma from Warthin tumor of the parotid gland. • The radiomics features extracted from T2-weighted images could help differentiate pleomorphic adenoma from Warthin tumor of the parotid gland. • The radiomics-clinical model was superior to the radiomics and the clinical models for differentiating pleomorphic adenoma from Warthin tumor of the parotid gland.


Assuntos
Adenolinfoma , Adenoma Pleomorfo , Neoplasias Parotídeas , Humanos , Glândula Parótida/diagnóstico por imagem , Glândula Parótida/patologia , Adenoma Pleomorfo/diagnóstico por imagem , Adenoma Pleomorfo/patologia , Adenolinfoma/diagnóstico por imagem , Adenolinfoma/patologia , Neoplasias Parotídeas/diagnóstico por imagem , Neoplasias Parotídeas/patologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética
7.
Evol Appl ; 15(11): 1820-1833, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426120

RESUMO

Global climate change has threatened world crop production and food security. Decoding the adaptive genetic basis of wild relatives provides an invaluable genomic resource for climate-smart crop breedinG. Here, we performed whole-genome sequencing of 185 diverse wild soybean (Glycine soja) accessions collected from three major agro-ecological zones in China to parse the genomic basis of local adaptation in wild soybean. The population genomic diversity pattern exhibited clear agro-ecological zone-based population structure, and multiple environmental factors were observed to contribute to the genetic divergence. Demographic analysis shows that wild soybeans from the three ecological zones diverged about 1 × 105 years ago, and then the effective population sizes have undergone different degrees of expansions. Genome-environment association identified multiple genes involved in the local adaptation, such as flowering time and temperature-related genes. A locus containing two adjacent MADS-box transcription factors on chromosome 19 was identified for multiple environmental factors, and it experienced positive selection that enables the adaptation to high-latitude environment. This study provides insights into the genetic mechanism of ecological adaptation in wild soybean that may facilitate climate-resilient soybean breeding.

8.
Plant Physiol ; 190(1): 480-499, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35640995

RESUMO

Photoperiod-sensitive plants such as soybean (Glycine max) often face threats from herbivorous insects throughout their whole growth period and especially during flowering; however, little is known about the relationship between plant flowering and insect resistance. Here, we used gene editing, multiple omics, genetic diversity and evolutionary analyses to confirm that the calcium-dependent protein kinase GmCDPK38 plays a dual role in coordinating flowering time regulation and insect resistance of soybean. Haplotype 2 (Hap2)-containing soybeans flowered later and were more resistant to the common cutworm (Spodoptera litura Fabricius) than those of Hap3. gmcdpk38 mutants with Hap3 knocked out exhibited similar flowering and resistance phenotypes as Hap2. Knocking out GmCDPK38 altered numerous flowering- and resistance-related phosphorylated proteins, genes, and metabolites. For example, the S-adenosylmethionine synthase GmSAMS1 was post-translationally upregulated in the gmcdpk38 mutants. GmCDPK38 has abundant genetic diversity in wild soybeans and was likely selected during soybean domestication. We found that Hap2 was mostly distributed at low latitudes and had a higher frequency in cultivars than in wild soybeans, while Hap3 was widely selected at high latitudes. Overall, our results elucidated that the two distinct traits (flowering time and insect resistance) are mediated by GmCDPK38.


Assuntos
Cálcio , Glycine max , Cálcio/metabolismo , Domesticação , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/fisiologia
9.
BMC Genomics ; 23(1): 250, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361112

RESUMO

BACKGROUND: With advances in next-generation sequencing technologies, an unprecedented amount of soybean accessions has been sequenced by many individual studies and made available as raw sequencing reads for post-genomic research. RESULTS: To develop a consolidated and user-friendly genomic resource for post-genomic research, we consolidated the raw resequencing data of 1465 soybean genomes available in the public and 91 highly diverse wild soybean genomes newly sequenced. These altogether provided a collection of 1556 sequenced genomes of 1501 diverse accessions (1.5 K). The collection comprises of wild, landraces and elite cultivars of soybean that were grown in East Asia or major soybean cultivating areas around the world. Our extensive sequence analysis discovered 32 million single nucleotide polymorphisms (32mSNPs) and revealed a SNP density of 30 SNPs/kb and 12 non-synonymous SNPs/gene reflecting a high structural and functional genomic diversity of the new collection. Each SNP was annotated with 30 categories of structural and/or functional information. We further identified paired accessions between the 1.5 K and 20,087 (20 K) accessions in US collection as genomic "equivalent" accessions sharing the highest genomic identity for minimizing the barriers in soybean germplasm exchange between countries. We also exemplified the utility of 32mSNPs in enhancing post-genomics research through in-silico genotyping, high-resolution GWAS, discovering and/or characterizing genes and alleles/mutations, identifying germplasms containing beneficial alleles that are potentially experiencing artificial selection. CONCLUSION: The comprehensive analysis of publicly available large-scale genome sequencing data of diverse cultivated accessions and the newly in-house sequenced wild accessions greatly increased the soybean genome-wide variation resolution. This could facilitate a variety of genetic and molecular-level analyses in soybean. The 32mSNPs and 1.5 K accessions with their comprehensive annotation have been made available at the SoyBase and Ag Data Commons. The dataset could further serve as a versatile and expandable core resource for exploring the exponentially increasing genome sequencing data for a variety of post-genomic research.


Assuntos
Genômica , Glycine max , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Glycine max/genética
10.
NAR Genom Bioinform ; 3(4): lqab108, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34805991

RESUMO

Transcription initiation is regulated in a highly organized fashion to ensure proper cellular functions. Accurate identification of transcription start sites (TSSs) and quantitative characterization of transcription initiation activities are fundamental steps for studies of regulated transcriptions and core promoter structures. Several high-throughput techniques have been developed to sequence the very 5'end of RNA transcripts (TSS sequencing) on the genome scale. Bioinformatics tools are essential for processing, analysis, and visualization of TSS sequencing data. Here, we present TSSr, an R package that provides rich functions for mapping TSS and characterizations of structures and activities of core promoters based on all types of TSS sequencing data. Specifically, TSSr implements several newly developed algorithms for accurately identifying TSSs from mapped sequencing reads and inference of core promoters, which are a prerequisite for subsequent functional analyses of TSS data. Furthermore, TSSr also enables users to export various types of TSS data that can be visualized by genome browser for inspection of promoter activities in association with other genomic features, and to generate publication-ready TSS graphs. These user-friendly features could greatly facilitate studies of transcription initiation based on TSS sequencing data. The source code and detailed documentations of TSSr can be freely accessed at https://github.com/Linlab-slu/TSSr.

11.
BMC Genomics ; 22(1): 453, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134624

RESUMO

BACKGROUND: Seeds are the economic basis of oilseed crops, especially soybeans, the most widely cultivated oilseed crop worldwide. Seed development is accompanied by a multitude of diverse cellular processes, and revealing the underlying regulatory activities is critical for seed improvement. RESULTS: In this study, we profiled the transcriptomes of developing seeds at 20, 25, 30, and 40 days after flowering (DAF), as these stages represent critical time points of seed development from early to full development. We identified a set of highly abundant genes and highlighted the importance of these genes in supporting nutrient accumulation and transcriptional regulation for seed development. We identified 8925 differentially expressed genes (DEGs) that exhibited temporal expression patterns over the course and expression specificities in distinct tissues, including seeds and nonseed tissues (roots, stems, and leaves). Genes specific to nonseed tissues might have tissue-associated roles, with relatively low transcript abundance in developing seeds, suggesting their spatially supportive roles in seed development. Coexpression network analysis identified several underexplored genes in soybeans that bridge tissue-specific gene modules. CONCLUSIONS: Our study provides a global view of gene activities and biological processes critical for seed formation in soybeans and prioritizes a set of genes for further study. The results of this study help to elucidate the mechanism controlling seed development and storage reserves.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Perfilação da Expressão Gênica , Sementes/genética , Glycine max/genética , Transcriptoma
12.
Plant Genome ; 14(2): e20097, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33900689

RESUMO

Anthracnose disease of sorghum is caused by Colletotrichum sublineola, a filamentous fungus. The genetic basis of resistance to anthracnose in sorghum is largely unclear, especially in Senegalese sorghum germplasm. In this study, 163 Senegalese sorghum accessions were evaluated for response to C. sublineola, and a genome-wide association study (GWAS) was performed to identify genetic variation associated with response to C. sublineola using 193,727 single nucleotide polymorphisms (SNPs) throughout the genome. Germplasm diversity analysis showed low genetic diversity and slow linkage disequilibrium (LD) decay among the Senegalese accessions. Phenotypic analysis resulted in relatively low differences to C. sublineola among the tested population. Genome-wide association study did not identify any significant association based on a strict threshold for the number of SNPs available. However, individual analysis of the top eight SNPs associated with relative susceptibility and resistance identified candidate genes that have been shown to play important roles in plant stress tolerance in previous studies. This study identifies sorghum genes whose annotated properties have known roles in host defense and thus identify them as candidates for use in breeding for resistance to anthracnose.


Assuntos
Estudo de Associação Genômica Ampla , Sorghum , Colletotrichum , Melhoramento Vegetal , Doenças das Plantas/genética , Sorghum/genética , Texas
13.
J Colloid Interface Sci ; 585: 258-266, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33296729

RESUMO

Exploring efficient, stable, and earth-abundant electrocatalysts for oxygen evolution reaction (OER) is of great significance for clean and renewable energy conversion technologies. In this work, in situ uniform Ni-doped tungsten carbide (Ni/WCX) nanoparticles (~3 nm) on carbon nanofibers (Ni/WCX-CNFs) that were to function as efficient OER catalysts were developed. Both the composition and electronic state of tungsten carbide (WCX: W-WC-W2C) could be regulated through varied Ni coupling. Owing to the synergistic effect between Ni and WCX, the reaction kinetics were facilitated, resulting in improved OER activity with low overpotentials of η10 = 350 mV (modified glassy carbon electrode) and η10 = 335 mV (self-supporting electrode). This work opens a facile territory for the development of cost-effective and highly promising OER electrocatalysts for use in real life applications.

14.
Plant Genome ; 13(3): e20038, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33217207

RESUMO

Modifying plant architecture is often necessary for yield improvement and climate adaptation, but we lack understanding of the genotype-phenotype map for plant morphology in sorghum. Here, we use a nested association mapping (NAM) population that captures global allelic diversity of sorghum to characterize the genetics of leaf erectness, leaf width (at two stages), and stem diameter. Recombinant inbred lines (n = 2200) were phenotyped in multiple environments (35,200 observations) and joint linkage mapping was performed with ∼93,000 markers. Fifty-four QTL of small to large effect were identified for trait BLUPs (9-16 per trait) each explaining 0.4-4% of variation across the NAM population. While some of these QTL colocalize with sorghum homologs of grass genes (e.g., those involved in transcriptional regulation of hormone synthesis [rice SPINDLY] and transcriptional regulation of development [rice Ideal plant architecture1]), most QTL did not colocalize with an a priori candidate gene (92%). Genomic prediction accuracy was generally high in five-fold cross-validation (0.65-0.83), and varied from low to high in leave-one-family-out cross-validation (0.04-0.61). The findings provide a foundation to identify the molecular basis of architecture variation in sorghum and establish genomic-enabled breeding for improved plant architecture.


Assuntos
Sorghum , Cruzamento , Mapeamento Cromossômico , Fenótipo , Locos de Características Quantitativas , Sorghum/genética
15.
PLoS Genet ; 16(11): e1009114, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175845

RESUMO

Soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) and has been further improved as a dual-use seed crop to provide highly valuable oil and protein for food, feed, and industrial applications. However, the underlying genetic and molecular basis remains less understood. Having combined high-confidence bi-parental linkage mapping with high-resolution association analysis based on 631 whole sequenced genomes, we mapped major soybean protein and oil QTLs on chromosome15 to a sugar transporter gene (GmSWEET39). A two-nucleotide CC deletion truncating C-terminus of GmSWEET39 was strongly associated with high seed oil and low seed protein, suggesting its pleiotropic effect on protein and oil content. GmSWEET39 was predominantly expressed in parenchyma and integument of the seed coat, and likely regulates oil and protein accumulation by affecting sugar delivery from maternal seed coat to the filial embryo. We demonstrated that GmSWEET39 has a dual function for both oil and protein improvement and undergoes two different paths of artificial selection. A CC deletion (CC-) haplotype H1 has been intensively selected during domestication and extensively used in soybean improvement worldwide. H1 is fixed in North American soybean cultivars. The protein-favored (CC+) haplotype H3 still undergoes ongoing selection, reflecting its sustainable role for soybean protein improvement. The comprehensive knowledge on the molecular basis underlying the major QTL and GmSWEET39 haplotypes associated with soybean improvement would be valuable to design new strategies for soybean seed quality improvement using molecular breeding and biotechnological approaches.


Assuntos
Glycine max/genética , Proteínas de Transporte de Monossacarídeos/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Haplótipos , Proteínas de Transporte de Monossacarídeos/metabolismo , América do Norte , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Vegetais Comestíveis/biossíntese , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/metabolismo , Glycine max/metabolismo
16.
Plant Genome ; 13(1): e20013, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016639

RESUMO

Vitamin A deficiency is one of the most prevalent nutritional deficiencies worldwide. Sorghum [Sorghum bicolor L. (Moench)] is a major cereal crop consumed by millions of people in regions with high vitamin A deficiency. We quantified carotenoid concentrations in a diverse sorghum panel using high-performance liquid chromatography and conducted a genome-wide association study (GWAS) of grain carotenoids to identify genes underlying carotenoid variation. There was moderate variation for ß-carotene (00.8 µg g-1 ), lutein (0.3-9.4 µg g-1 ), and zeaxanthin (0.2-9.1 µg g-1 ), but ß-cryptoxanthin and α-carotene were nearly undetectable. Genotype had the largest effect size, at 81% for zeaxanthin, 62% for ß-carotene, and 53% for lutein. Using multiple models, GWAS identified several significant associations between carotenoids and single nucleotide polymorphisms (SNPs), some of which colocalized with known carotenoid genes that have not been previously implicated in carotenoid variation. Several of the candidate genes identified have also been identified in maize (Zea mays L.) and Arabidopsis (Arabidopsis thaliana) carotenoid GWAS studies. Notably, an SNP inside the putative ortholog of maize zeaxanthin epoxidase (ZEP) had the most significant association with zeaxanthin and with the ratio between lutein and zeaxanthin, suggesting that ZEP is a major gene controlling sorghum carotenoid variation. Overall findings suggest there is oligogenic inheritance for sorghum carotenoids and suitable variation for marker-assisted selection. The high carotenoid germplasm and significant associations identified in this study can be used in biofortification efforts to improve the nutritional quality of sorghum.


Assuntos
Sorghum , Biofortificação , Carotenoides , Grão Comestível , Estudo de Associação Genômica Ampla , Provitaminas , Locos de Características Quantitativas , Sorghum/genética
17.
World J Gastroenterol ; 26(30): 4501-4522, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32874061

RESUMO

BACKGROUND: No guideline recommends antiviral therapy for hepatitis B e antigen (HBeAg)-positive chronic hepatitis B patients with persistently normal alanine aminotransferase levels and a high hepatitis B virus (HBV) DNA viral load. AIM: To evaluate the feasibility and safety of a Chinese herbal formula as a therapeutic option for chronic HBV infection. METHODS: In total, 395 patients (30-65 years old) with confirmed HBeAg-positive chronic hepatitis B infection and persistently normal alanine aminotransferase were randomized to receive either Chinese herbal formula or placebo for 96 wk. Endpoints to evaluate therapeutic efficacy included: (1) HBV DNA levels decreased to less than 4 log10 IU/mL at weeks 48 and 96; and (2) HBeAg clearance and seroconversion rates at weeks 48 and 96. RESULTS: HBV DNA levels ≤ 4 log10 IU/mL were 10.05% at week 48 and 18.59% at week 96 in the treatment group. The HBeAg clearance and conversion rates were 8.54% and 8.04% at week 48 and 16.08% and 14.57% at week 96, respectively. However, HBV DNA levels ≤ 4 log10 IU/mL were 2.55% and 2.55% at weeks 48 and 96, respectively, and the HBeAg clearance rates were 3.06% and 5.61% at weeks 48 and 96, respectively, in the control group. The quantitative hepatitis B surface antigen and HBeAg levels at baseline and changes during the treatment period as well as the alanine aminotransferase elevation at weeks 12 and 24 were strong predictors of HBeAg clearance. CONCLUSION: High rates of HBV DNA reduction, HBeAg clearance and seroconversion could be achieved with Chinese herbal formula treatments, and the treatments were relatively safe for HBeAg-positive chronic hepatitis B-infected patients with persistently normal alanine aminotransferase. The ability of the compound to modulate host immune function probably contributed to this effect.


Assuntos
Antígenos E da Hepatite B , Hepatite B Crônica , Adulto , Idoso , Antivirais/efeitos adversos , China , DNA Viral/uso terapêutico , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/genética , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/tratamento farmacológico , Humanos , Pessoa de Meia-Idade , Resultado do Tratamento
18.
Microbiol Resour Announc ; 9(37)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912912

RESUMO

Forty-two bacterial strains were isolated from root samples of Sorghum bicolor The strains spanned 17 genera, including Dechloromonas, Duganella, Dyella, Flavobacterium, Herbaspirillum, Lutibacter, Mucilaginibacter, Novosphingobium, Paraburkholderia, Pedobacter, Pleomorphomonas, Rhizobacter, Rhizobium, Rhizomicrobium, Rugamonas, Variovorax, and Xanthobacter Their whole-genome sequences revealed diverse metabolic processes, including biological nitrogen fixation, in sorghum root microbiota.

19.
Theor Appl Genet ; 133(10): 2927-2935, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32617615

RESUMO

KEY MESSAGE: The recessive Hessian fly resistance gene h4 and flanking SNP markers were located to a 642 kb region in chromosome 1A of the wheat cultivar 'Java.' Hessian fly (HF), Mayetiola destructor, is one of the most destructive insect pests in wheat worldwide. The wheat cultivar 'Java' was reported to carry a recessive gene (h4) for HF resistance; however, its chromosome location has not been determined. To map the HF resistance gene in Java, two populations of recombinant inbred lines (RILs) were developed from 'Bobwhite' × Java and 'Overley' × Java, respectively, and were phenotyped for responses to infestation of HF Great Plains biotype. Analysis of phenotypic data from the F1 and the RIL populations confirmed that one recessive gene conditioned HF resistance in Java. Two linkage maps were constructed using single-nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing (GBS). The h4 gene was mapped to the distal end of the short arm of chromosome 1A, which explained 60.4 to 70.5% of the phenotypic variation for HF resistance in the two populations. The GBS-SNPs in the h4 candidate interval were converted into Kompetitive Allele-Specific Polymerase Chain Reaction (KASP) markers to eliminate the missing data points in GBS-SNPs. Using the revised maps with KASP markers, h4 was further located to a 642 kb interval (6,635,984-7,277,935 bp). The two flanking KASP markers, KASP3299 and KASP1871, as well as four other closely linked KASP markers, may be useful for pyramiding h4 with other HF resistance genes in breeding.


Assuntos
Dípteros , Genes Recessivos , Triticum/genética , Alelos , Animais , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Genótipo , Herbivoria , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
20.
Plant Cell Environ ; 43(9): 2080-2094, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515009

RESUMO

Soybean is a high inorganic phosphate (Pi) demanding crop; its production is strongly suppressed when Pi is deficient in soil. However, the regulatory mechanism of Pi deficiency tolerance in soybean is still largely unclear. Here, our findings highlighted the pivotal role of the ethylene-associated pathway in soybean tolerance to Pi deficiency by comparatively studying transcriptome changes between a representative Pi-deficiency-tolerant soybean genotype NN94156 and a sensitive genotype Bogao under different Pi supplies. By further integrating high-confident linkage and association mapping, we identified that Ethylene-Overproduction Protein 1 (GmETO1), an essential ethylene-biosynthesis regulator, underlies the major quantitative trait locus (QTL) q14-2 controlling Pi uptake. GmETO1 was also the representative member of ETO1 family members that was strongly induced by Pi deficiency. Overexpressing GmETO1 significantly enhanced Pi deficiency tolerance by increasing proliferation and elongation of hairy roots, Pi uptake and use efficiency, and conversely, silencing of GmETO1 led to opposite findings. We further demonstrated that Pi-deficiency inducible genes critical for root morphological and physiological traits including GmACP1/2, Pht1;4, Expansin-A7 and Root Primordium Defective 1 functioned downstream of GmETO1. Our study provides comprehensive insight into the complex regulatory mechanism of Pi deficiency tolerance in soybean and a potential way to genetically improve soybean low-Pi tolerance.


Assuntos
Glycine max/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Fósforo/farmacocinética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...