Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 185: 1-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25746471

RESUMO

The present study investigated the influences of three metabolic uncouplers (pCP, oCP and oNP) on excess activated sludge reduction and microbial products of extracellular polymeric substances (EPS) and intracellular storage product (polyhydroxybutyrate, PHB) in short-term tests. Results showed sludge was reduced 58.2%, 59.8% and 80.8%, respectively, at pCP, oCP and oNP concentrations of 20mg/L. The dosage of three uncouplers had no obviously influences on COD removal and sludge settleability, but had significant inhibition effect on ammonia removal, especially for oNP. Low concentration of pCP and oNP (5mg/L) dosing resulted in protein and polysaccharide content increased in EPS, however, they were decreased at high pCP and oNP concentrations (>5mg/L). To oCP, the protein content in EPS was increased linearly with oCP concentration. Furthermore, metabolic uncouplers addition stimulated the production of PHB. Among three uncouplers, oCP could be an alternative uncoupler for sludge reduction in activated sludge process.


Assuntos
Bactérias Anaeróbias/metabolismo , Biopolímeros/biossíntese , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Esgotos/microbiologia , Desacopladores/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos
2.
Bioresour Technol ; 163: 199-205, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813388

RESUMO

A novel, low cost and easy regeneration biosorbent, chem-modified walnut shell (MWNS), was studied to investigate its potential for removal of an anionic dye, reactive brilliant red K-2BP. The MWNS was synthesized with epichlorohydrin and diethylenetriamine as etherifying agent and crosslinking agent, respectively, and its characteristics were performed with Fourier transform infrared spectroscopy, scanning electron microscope, electron dispersive spectroscopy and thermogravimetric analysis. The influences of pH (0.5-11) and adsorbent dosage (0.1-6g/L) on adsorption capacity of MWNS were evaluated. The maximum K-2BP adsorption capacities (Qm) calculated by best fitting model (Langmuir) were 568.18 mg/g at 313 K, which was almost 10 times than that of raw material. The adsorption kinetic was well confirmed with pseudo-second-order equation. Thermodynamic studies demonstrated adsorption process by MWNS was spontaneous and endothermic. Furthermore, the regeneration capability of MWNS implied MWNS was a cheap, excellent and promising biosorbent for K-2BP removal in azo dye wastewater treatment.


Assuntos
Corantes/isolamento & purificação , Juglans , Termodinâmica , Adsorção , Ânions , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
3.
Water Sci Technol ; 63(7): 1446-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21508549

RESUMO

Biological nutrient removal requires sufficient carbon source. Meanwhile, the removal of organic matter in wastewater requires energy consumption in the aeration tank. Carbon source for nutrient removal in most wastewater treatment plants with conventional primary clarifier (CPC) is generally insufficient in China. In order to increase carbon source and to save energy, a part of the CPC may be retrofitted as an activated primary clarifier (APC). In this paper, a pilot scale experiment was conducted to examine the performance of primary sludge fermentation and its effect on nitrogen and phosphorus removal. Results show that the primary sludge fermentation in APC has produced a similar VFA/TP ratio but a higher BOD5/TN ratio compared with those in the CPC effluent, and the TN concentrations in the secondary effluent are at 8.0, 10.8, and 17.4 mg/L, while TP is at 0.45, 1.10, and 2.28 mg/L when the pilot test system was fed with (1) the APC effluent, (2) 50% from the APC effluent and 50% from the CPC effluent, and (3) the CPC effluent, respectively. Results also indicate that the BOD5/TN ratio is a more sensitive factor than the VFA/TP ratio for nutrient removal and energy conservation for the APC fermentation.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos , Poluição Química da Água/prevenção & controle , Carbono/metabolismo , China , Desenho de Equipamento , Fermentação , Nitrogênio/metabolismo , Fósforo/metabolismo , Purificação da Água/instrumentação , Purificação da Água/métodos
4.
Water Sci Technol ; 64(6): 1298-306, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22214084

RESUMO

A pilot study was conducted to test an membrane bioreactor (MBR) process for combined biological and chemical P removal to achieve a very low effluent total phosphorus (TP) concentration of 0.025 mg P/L. With the data from the pilot test, a simulation study was performed to demonstrate that: (1) the pilot system behaviour (effluent quality, MLSS, etc.) can be modelled accurately with an activated sludge model combined with a chemical precipitation model; and (2) with the calibrated model, simulation scenarios can be performed to further understand the pilot MBR process, and provide information for optimizing design and operation when applied at full-scale. Results from the pilot test indicated that the system could achieve very low effluent TP concentration through biological P removal with a limited chemical addition, and chemical addition to remove P to very low level did not affect other biological processes, i.e., organic and nitrogen removal. Simulation studies indicate that the process behaviour can be modelled accurately with an activated sludge model combined with a chemical precipitation model, and the calibrated model can be used to provide information to optimize system design and operation, e.g., chemical addition control under dynamic loading conditions is important for maintaining biological P removal.


Assuntos
Reatores Biológicos/microbiologia , Membranas Artificiais , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Nitrogênio/metabolismo , Fósforo/metabolismo
5.
Biotechnol Bioeng ; 98(6): 1259-75, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17514758

RESUMO

Hu et al. (2007) presented a general kinetic model for biological nutrient removal (BNR) activated sludge (AS) systems in general, but for external nitrification (EN) BNRAS (ENBNRAS) systems in particular. In this article, this model is evaluated against a large number of experimental data sets. In this evaluation, the model is first used to simulate a wide variety of conventional internal nitrification (IN) BNRAS systems to evaluate its predictions and also evaluate the model parameters suggested by Hu et al. (2007), and to calibrate those constants for which values are not available in the literature. Simulation results indicate that the model, with appropriately calibrated parameters, is capable of predicting COD removal, nitrification and denitrification and two types of biological excess phosphorus removal (BEPR), namely aerobic and anoxic/aerobic P uptake BEPR. The model is then used to simulate the ENBNRAS systems to evaluate its capacity of simulating the behaviour of this system. Simulation results show that the model is capable of simulating the behaviour of the ENBNRAS systems, including COD, nitrification, denitrification and BEPR, particularly anoxic P uptake BEPR, with the values of kinetic and stoichiometric parameters obtained in modelling conventional BNRAS systems, except for micro(NIT), K(MP), eta(PAO) and eta(H) which required calibration.


Assuntos
Biodegradação Ambiental , Modelos Químicos , Esgotos/química , Cinética , Nitrogênio/química , Fósforo/química
6.
Biotechnol Bioeng ; 98(6): 1242-58, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17514760

RESUMO

In this article, a kinetic model is developed and presented for biological nutrient removal (BNR) activated sludge (BNRAS) systems in general, but for external nitrification (EN) BNRAS (ENBNRAS) systems in particular. The model is based on the UCTPHO model, but includes some significant modifications, such as anoxic P uptake and associated denitrification by phosphorus accumulating organisms (PAOs). Some key features of the model are described and discussed before the model is presented. Model evaluation will be addressed in another article (Hu et al., 2007).


Assuntos
Biodegradação Ambiental , Modelos Químicos , Esgotos/química , Cinética , Nitrogênio/química , Fósforo/química
7.
Water Res ; 37(14): 3430-44, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12834736

RESUMO

The external nitrification (EN) biological nutrient removal (BNR) activated sludge (ENBNRAS) system shows considerable promise for full-scale implementation. As an aid for this implementation, a mathematical simulation model would be an invaluable tool. To develop such a model, a study was conducted to select the most suitable simulation model to serve as a starting point for further development. For this, the existing available simulation models for BNRAS systems are compared with one another and evaluated against experimental observations in the literature and on ENBNRAS systems. One process immediately apparent to be crucially important is the anoxic growth of phosphorus accumulating organisms (PAOs), with associated PAO denitrification and anoxic P uptake for polyP formation. These linked processes are lacking in the earlier kinetic simulation models for BNRAS systems, which were based on aerobic PAO growth and P uptake only, but have been incorporated into the more recent kinetic models. This provides a substantive body of information on modelling this aspect. Other processes of significance identified to require consideration are anaerobic slowly biodegradable COD (SBCOD) hydrolysis to readily biodegradable COD (RBCOD), and COD loss. Both processes have significant impact on the predicted BEPR performance. Due to the uncertainties associated with the mechanisms and quantification of these two processes, it is concluded that the most extensively validated kinetic simulation model should be selected for development, and that the omissions in this model should be addressed progressively, using the relevant information drawn from the existing models, the literature and observations on ENBNRAS systems.


Assuntos
Reatores Biológicos , Modelos Teóricos , Nitrogênio/metabolismo , Fósforo/metabolismo , Esgotos/microbiologia , Previsões , Cinética , Oxigênio , Fósforo/isolamento & purificação , Esgotos/química , Eliminação de Resíduos Líquidos
8.
Biotechnol Bioeng ; 83(3): 260-73, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12783482

RESUMO

A systematic lab-scale experimental investigation is reported for the external nitrification (EN) biological nutrient removal (BNR) activated sludge (ENBNRAS) system, which is a combined fixed and suspended medium system. The ENBNRAS system was proposed to intensify the treatment capacity of BNR-activated sludge (BNRAS) systems by addressing two difficulties often encountered in practice: (a) the long sludge age for nitrification requirement; and (b) sludge bulking. In the ENBNRAS system, nitrification is transferred from the aerobic reactor in the suspended medium activated sludge system to a fixed medium nitrification system. Thus, the sludge age of the suspended medium activated sludge system can be reduced from 20 to 25 days to 8 to 10 days, resulting in a decrease in reactor volume per ML wastewater treated of about 30%. Furthermore, the aerobic mass fraction can also be reduced from 50% to 60% to <30% and concommitantly the anoxic mass fraction can be increased from 25% to 35% to >55% (if the anaerobic mass fraction is 15%), and thus complete denitrification in the anoxic reactors becomes possible. Research indicates that both the short sludge age and complete denitrification could ameliorate anoxic aerobic (AA) or low food/microorganism (F/M) ratio filamentous bulking, and hence reduce the surface area of secondary settling tanks or increase the treatment capacity of existing systems. The lab-scale experimental investigations indicate that the ENBNRAS system can obtain: (i) very good chemical oxygen demand (COD) removal, even with an aerobic mass fraction as low as 20%; (ii) high nitrogen removal, even for a wastewater with a high total kjeldahl nitrogen (TKN)/COD ratio, up to 0.14; (iii) adequate settling sludge (diluted sludge volume index [DSVI] <100 mL/g); and (iv) a significant reduction in oxygen demand.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Carbono/metabolismo , Compostos de Nitrogênio/metabolismo , Compostos de Fósforo/metabolismo , Esgotos/microbiologia , Purificação da Água/instrumentação , Biodegradação Ambiental , Desenho de Equipamento , Análise de Falha de Equipamento , Projetos Piloto , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos
9.
Water Res ; 36(19): 4927-37, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12448537

RESUMO

In this paper, research on the growth performance of phosphate-accumulating organisms (PAOs) was conducted based on literature and experimental investigations on biological nutrient removal (BNR) activated sludge (BNRAS) systems. The research aims at presenting the occurrence of denitrifying PAOs (DPAOs), abstracting information on the kinetics and stoichiometry of PAOs under anoxic conditions and determining the conditions that stimulate the PAO growth under anoxic conditions. The research results indicate that the PAOs are capable of utilizing nitrate as electron acceptor instead of oxygen in BNRAS systems, particularly in external nitrification BNRAS (ENBNRAS) systems. However, the growth yield of PAOs under anoxic conditions should be reduced to about 70% of that under aerobic conditions, and further the stoichiometric coefficient for anoxic P uptake per PHB COD utilized should be reduced to about 80% of that under aerobic conditions as the DPAOs show a significantly lower BEPR performance and use the influent RBCOD less "efficiently" compared with aerobic PAOs (APAOs). The research results also indicate that the major factor influencing the occurrence of DPAOs and associated anoxic P uptake is the nitrate load into the anoxic reactor, i.e. the nitrate load should be large enough or exceeds the denitrification potential of ordinary heterotrophic organisms (OHOs), i.e. non-PAO organisms in the anoxic reactor to stimulate DPAOs in the system as the specific denitrification rate of OHOs (K'2 OHO) is significantly larger than that of PAOs (K'2 PAO). In terms of this competition, if the nitrate load into the main anoxic reactor is less than the denitrification potential of OHOs, then the OHOs will outcompete PAOs for using the limited nitrate, while if the nitrate load in the main anoxic reactor exceeds the denitrification potential of OHOs, then the PAOs would have opportunities to use the "excess" nitrate and so develop in the system. The other factors that influence DPAOs include the system aerobic mass fraction, sequence of reactors and frequency of sludge alternation between the aerobic and anoxic states. Although it does appear that these factors above may significantly influence the fraction of DPAOs (etaG), the quantitative relationship between these factors and etaG is not known, and the experimental observations indicate that this will be system-specific, and require calibration for each situation.


Assuntos
Nitrogênio/metabolismo , Fosfatos/farmacocinética , Fósforo/metabolismo , Esgotos/microbiologia , Reatores Biológicos , Cinética , Nitrogênio/isolamento & purificação , Oxigênio , Fósforo/isolamento & purificação , Dinâmica Populacional , Esgotos/química , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA