Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 89(7): 4079-4092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847743

RESUMO

Ohmic heating (OH) at different conditions (voltage: 15, 20, 25 V; frequency: 1, 5, 10 kHz) and one-step water bath (WB) were used to heat wash and unwash surimi prepared from fresh pre-rigor common carp. The optimal heating conditions were established through assessments of gel strength, Texture Profile Analysis (TPA), water-holding capacity (WHC), whiteness, and sensory evaluation. Then, the impact of heating modes on gelation properties of unwashed surimi based on the optimal heating conditions was investigated. The study findings indicated a significant enhancement in gel properties compared to WB. Unwashed surimi gel properties showed improvement when derived from freshly caught raw fish and subjected to OH treatment. Moreover, variations in frequencies and voltages were observed to influence the heating rate. Optimal gel quality was achieved at 10 kHz 20 V (10 V/cm), facilitating swift progression through the gel deterioration stage, inhibition of protein hydrolyzing enzymes activity, and establishment of a stable gel network. Continuing to increase the heating rate would disrupt its network structure, resulting in diminished gel strength and WHC. The best quality of unwashed surimi gel was achieved by heating to 40°C for 30 min, followed by heating to 90°C for another 30 min (40°C 30 min + 90°C 30 min) under 10 kHz 20 V. The gel strength increased when held for 1 h at 40°C. For optimal heating efficiency, the heating mode of 40°C 30 min + 90°C 30 min is recommended to prepare unwashed surimi gel. PRACTICAL APPLICATION: Ohmic heating, as a rapid food heat treatment method, can both increase the heating rate and improve the gelation properties of freshwater surimi. There is a wide range of potential applications for the heat treatment of the surimi.


Assuntos
Carpas , Produtos Pesqueiros , Manipulação de Alimentos , Géis , Temperatura Alta , Animais , Géis/química , Produtos Pesqueiros/análise , Manipulação de Alimentos/métodos , Humanos , Paladar , Culinária/métodos , Calefação/métodos , Água/química
2.
J Hazard Mater ; 467: 133700, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325098

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is perceived an emerging threat to terrestrial ecosystem, however, clear and accurate studies to fully understander ecotoxicity and underlying mechanisms of DEHP on the soil fauna remain poorly understood. Therefore, this study conducted a microcosm experiment of two earthworm ecotypes to investigate the ecological hazards of DHEP from multiple perspectives. The results showed that DEHP significantly increased the 8-hydroxy-deoxyguanosine (8-OHdG) content both in Eisenia foetida (13.76-133.0%) and Metaphire guillelmi (11.01-49.12%), leading to intracellular DNA damage. Meanwhile, DEHP negatively affected the expression of functional genes (ATP-6, NADH1, COX), which may be detrimental to mitochondrial respiration and oxidative stress at the gene level. The two earthworm guts shared analogous dominant bacteria however, the incorporation of DEHP drastically suppressed the homogeneity and diversity of the gut microbes, which further disrupted the homeostasis of the gut microbial ecological network. The keystone species in the gut of E. foetida decreased under DEHP stress but increased in the gut of M. guillelmi. Moreover, DEHP presented detrimental effects on soil enzyme activity, which is mainly associated with pollutant levels and earthworm activity. Collectively, the findings expand the understanding of soil ecological health and reveal the underlying mechanisms of the potential exposure risk to DEHP.


Assuntos
Dietilexilftalato , Microbioma Gastrointestinal , Oligoquetos , Ácidos Ftálicos , Animais , Dietilexilftalato/toxicidade , Ecossistema , 8-Hidroxi-2'-Desoxiguanosina , Dano ao DNA , Solo
3.
Sci Total Environ ; 912: 168876, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38013100

RESUMO

As a ubiquitous contaminant in aquatic environments, diethyl phthalate (DEP) is a major threat to ecosystems because of its increasing utilization. However, the ecological responses to and toxicity mechanisms of DEP in aquatic organisms remain poorly understood. To address this environmental concern, we selected Chlorella vulgaris (C. vulgaris) as a model organism and investigated the toxicological effects of environmentally relevant DEP concentrations at the individual, physiological, biochemical, and molecular levels. Results showed that the incorporation of DEP significantly inhibited the growth of C. vulgaris, with inhibition rates ranging from 10.3 % to 83.47 %, and disrupted intracellular chloroplast structure at the individual level, while the decrease in photosynthetic pigments, with inhibition rates ranging from 8.95 % to 73.27 %, and the imbalance of redox homeostasis implied an adverse effect of DEP at the physio-biochemical level. Furthermore, DEP significantly reduced the metabolic activity of algal cells and negatively altered the cell membrane integrity and mitochondrial membrane potential. In addition, the apoptosis rate of algal cells presented a significant dose-effect relationship, which was mainly attributed to the fact that DEP pollutants regulated Ca2+ homeostasis and further increased the expression of Caspase-8, Caspase-9, and Caspase-3, which are associated with internal and external pathways. The gene transcriptional expression profile further revealed that DEP-mediated toxicity in C. vulgaris was mainly related to the destruction of the photosynthetic system, terpenoid backbone biosynthesis, and DNA replication. Overall, this study offers constructive understandings for a comprehensive assessment of the toxicity risks posed by DEP to C. vulgaris.


Assuntos
Chlorella vulgaris , Ácidos Ftálicos , Poluentes Químicos da Água , Chlorella vulgaris/metabolismo , Ecossistema , Saúde Ambiental , Ácidos Ftálicos/metabolismo , Poluentes Químicos da Água/metabolismo
4.
Meat Sci ; 185: 108724, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34952489

RESUMO

The objective of this study was to investigate the protective effects and the underlying mechanisms of resveratrol (RES) against hydrogen peroxide (H2O2)-induced oxidative stress in bovine skeletal muscle cells (BMCs). Pretreatment of BMCs with RES prior to H2O2 exposure increased cell viability, attenuated reactive oxygen species, and stabilized the redox state. H2O2 exposure activated sirtuin type 1 (SIRT1) and nuclear factor E2-related factor 2 (NRF2)-mediated signaling pathways. Pretreatment with RES did not alter SIRT1-regulated genes but inhibited the upregulation of NRF2, whereas enhanced heme oxygenase 1 (HO-1) expression. Pretreatment with RES prior to H2O2 exposure failed to suppress NRF2 expression when NRF2 was knocked down by RNA interference. However, HO-1 expression still could be induced by RES. These results suggest that RES has benifical effects against oxidative stress. NRF2-mediated pathway play an important role, and HO-1 upregulation is the key process in RES regulation. RES may be used as a therapeutic agent for meat quality improvement in beef cattle.


Assuntos
Apoptose , Peróxido de Hidrogênio , Animais , Antioxidantes/farmacologia , Bovinos , Músculo Esquelético , Estresse Oxidativo , Espécies Reativas de Oxigênio , Resveratrol/farmacologia
5.
Microbiol Immunol ; 65(10): 410-421, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34101233

RESUMO

Surfactin, an antibacterial peptide, produced by various Bacillus subtilis strains, have broad-spectrum antibacterial and immune-enhancing functions. In this study, we investigated the anti-inflammatory, antioxidant, and hepatoprotective effect of surfactin on zebrafish (Danio rerio) larvae following their exposure to copper sulfate (CuSO4 ). The mature AB wild-type and a transgenic line of zebrafish larvae that expressed enhanced GFP (EGFP) named Tg (Lyz:EGFP) were exposed to 0, 20, 40, and 60 µg/mL surfactin after incubation with 3.2 µg/mL CuSO4 for 2 h from 72 h postfertilization (hpf). Different endpoints, such as migration of GFP-labeled neutrophils, analysis of inflammatory cytokines and transaminases, markers of oxidation, expression of certain genes, and histological changes of liver, were studied to evaluate the function of surfactin. The protein expression levels of NF-κBp65, TNF-α, cyclooxygenase-2 (COX-2), and iNOS were determined in murine macrophage RAW 264.7 cells by western blotting. Our results show that surfactin reduced migration of neutrophils and relieved hepatic injury. In addition, surfactin reduced the index levels of inflammatory factors, oxidative stress response, and improved hepatic function. Surfactin also significantly inhibited the expression of IL-1ß, IL-8, TNF-α, nitric oxide, NF-κBp65, COX-2, and iNOS, and increased the expression of IL-10. Thus, our results demonstrate that surfactin has anti-inflammatory, antioxidant, and hepatoprotective activities. Surfactin has potential as a novel inflammation and immune adjustment.


Assuntos
Sulfato de Cobre , Peixe-Zebra , Animais , Sulfato de Cobre/toxicidade , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Fígado , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...