Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 977: 176711, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38839029

RESUMO

Histone deacetylase (HDAC) inhibitors are potential candidates for treating pulmonary fibrosis. MPT0E028, a novel pan-HDAC inhibitor, has been reported to exhibit antitumor activity in several cancer cell lines. In this study, we investigated the mechanism underlying the inhibitory effects of MPT0E028 on the expression of fibrogenic proteins in human lung fibroblasts (WI-38). Our results revealed that MPT0E028 inhibited transforming growth factor-ß (TGF-ß)-, thrombin-, and endothelin 1-induced connective tissue growth factor (CTGF) expression in a concentration-dependent manner. In addition, MPT0E028 suppressed TGF-ß-stimulated expression of fibronectin, collagen I, and α-smooth muscle actin (α-SMA). Furthermore, MPT0E028 inhibited the TGF-ß-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). MPT0E028 reduced the increase in SMAD3 and c-Jun phosphorylation, and SMAD3-and activator protein-1 (AP-1)-luciferase activities under TGF-ß stimulation. Transfection with mitogen-activated protein kinase phosphatase-1 (MKP-1) siRNA reversed the suppressive effects of MPT0E028 on TGF-ß-induced increases in CTGF expression; JNK, p38, and ERK phosphorylation; and SMAD3 and AP-1 activation. Moreover, MPT0E028 increased MKP-1 acetylation and activity in WI-38 cells. Pretreatment with MPT0E028 reduced the fibrosis score and fibronectin, collagen, and α-SMA expression in bleomycin-induced pulmonary fibrosis mice. In conclusion, MPT0E028 induced MKP-1 acetylation and activation, which in turn inhibited TGF-ß-stimulated JNK, p38, and ERK phosphorylation; SMAD3 and AP-1 activation; and subsequent CTGF expression in human lung fibroblasts. Thus, MPT0E028 may be a potential drug for treating pulmonary fibrosis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Fosfatase 1 de Especificidade Dupla , Fibroblastos , Inibidores de Histona Desacetilases , Pulmão , Fibrose Pulmonar , Fator de Crescimento Transformador beta , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/tratamento farmacológico , Animais , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/citologia , Pulmão/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Linhagem Celular , Proteína Smad3/metabolismo , Fosforilação/efeitos dos fármacos , Masculino , Ativação Enzimática/efeitos dos fármacos , Camundongos Endogâmicos C57BL
2.
J Biomed Sci ; 30(1): 40, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37312162

RESUMO

BACKGROUND: Reduction of histone deacetylase (HDAC) 2 expression and activity may contribute to amplified inflammation in patients with severe asthma. Connective tissue growth factor (CTGF) is a key mediator of airway fibrosis in severe asthma. However, the role of the HDAC2/Sin3A/methyl-CpG-binding protein (MeCP) 2 corepressor complex in the regulation of CTGF expression in lung fibroblasts remains unclear. METHODS: The role of the HDAC2/Sin3A/MeCP2 corepressor complex in endothelin (ET)-1-stimulated CTGF production in human lung fibroblasts (WI-38) was investigated. We also evaluated the expression of HDAC2, Sin3A and MeCP2 in the lung of ovalbumin-induced airway fibrosis model. RESULTS: HDAC2 suppressed ET-1-induced CTGF expression in WI-38 cells. ET-1 treatment reduced HDAC2 activity and increased H3 acetylation in a time-dependent manner. Furthermore, overexpression of HDAC2 inhibited ET-1-induced H3 acetylation. Inhibition of c-Jun N-terminal kinase, extracellular signal-regulated kinase, or p38 attenuated ET-1-induced H3 acetylation by suppressing HDAC2 phosphorylation and reducing HDAC2 activity. Overexpression of both Sin3A and MeCP2 attenuated ET-1-induced CTGF expression and H3 acetylation. ET-1 induced the disruption of the HDAC2/Sin3A/MeCP2 corepressor complex and then prompted the dissociation of HDAC2, Sin3A, and MeCP2 from the CTGF promoter region. Overexpression of HDAC2, Sin3A, or MeCP2 attenuated ET-1-stimulated AP-1-luciferase activity. Moreover, Sin3A- or MeCP2-suppressed ET-1-induced H3 acetylation and AP-1-luciferase activity were reversed by transfection of HDAC2 siRNA. In an ovalbumin-induced airway fibrosis model, the protein levels of HDAC2 and Sin3A were lower than in the control group; however, no significant difference in MeCP2 expression was observed. The ratio of phospho-HDAC2/HDAC2 and H3 acetylation in the lung tissue were higher in this model than in the control group. Overall, without stimulation, the HDAC2/Sin3A/MeCP2 corepressor complex inhibits CTGF expression by regulating H3 deacetylation in the CTGF promoter region in human lung fibroblasts. With ET-1 stimulation, the HDAC2/Sin3A/MeCP2 corepressor complex is disrupted and dissociated from the CTGF promoter region; this is followed by AP-1 activation and the eventual initiation of CTGF production. CONCLUSIONS: The HDAC2/Sin3A/MeCP2 corepressor complex is an endogenous inhibitor of CTGF in lung fibroblasts. Additionally, HDAC2 and Sin3A may be of greater importance than MeCP2 in the pathogenesis of airway fibrosis.


Assuntos
Asma , Fibrose Pulmonar , Humanos , Endotelina-1/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Ovalbumina , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fator de Transcrição AP-1 , Proteínas Correpressoras , Fibroblastos , Pulmão , Luciferases , Histona Desacetilase 2/genética
3.
J Biomed Sci ; 28(1): 38, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011384

RESUMO

BACKGROUND: Histone deacetylase (HDAC) inhibition was reported to ameliorate lung fibrosis in animal models. However, little is known about the underlying mechanism of HDAC7 in the regulation of CTGF production in lung fibroblasts. METHODS: The role of HDAC7 in CTGF production caused by ET-1 stimulation in WI-38 cells (human lung fibroblast) was examined. We also evaluated the expression of HDAC7 in the lung of ovalbumin-induced airway fibrosis model. Statistical data were shown as mean ± standard error. RESULTS: ET-1-stimulated CTGF and α-SMA expression was attenuated by small interfering (si)RNA interference of HDAC7. ET-1 promoted HDAC7 translocation from the cytosol to nucleus. ET-1-stimulated CTGF expression was reduced by the transfection of p300 siRNA. ET-1 induced an increase in p300 activity. Furthermore, the acetylation of c-Jun was time-dependently induced by ET-1 stimulation, which was reduced by transfection of either HDAC7 or p300 siRNA. Both transfection of HDAC7 and p300 siRNA suppressed the ET-1-increased activity of AP-1-luciferase. Moreover, the presence of HDAC7 was required for ET-1-stimulated formation of HDAC7, p300, and AP-1 complex and recruitment to the CTGF promoter region. In an ovalbumin-induced airway fibrosis model, the protein level of HDAC7 was increased in the lung tissue, and the distribution of HDAC7 was colocalized with α-SMA-positive cells in the subepithelial layer of the airway. CONCLUSIONS: ET-1 activates HDAC7 to initiate AP-1 transcriptional activity by recruiting p300 and eventually promotes the production of CTGF. HDAC7 might play a vital role in airway fibrosis and have the potential to be developed as a therapeutic target.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Proteína p300 Associada a E1A/metabolismo , Endotelina-1/genética , Expressão Gênica , Histona Desacetilases/genética , Fator de Transcrição AP-1/metabolismo , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Endotelina-1/metabolismo , Fibroblastos , Histona Desacetilases/metabolismo , Humanos , Pulmão
4.
FASEB J ; 33(11): 12554-12564, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451010

RESUMO

Mycobacterium tuberculosis (M.tb) infection in lung causes pulmonary fibrosis, which leads to the irreversible reduction of pulmonary function. Fibrotic protein connective tissue growth factor (CTGF) expression has been confirmed to play a crucial role in lung fibrosis. However, the underlying signal pathway and effect of M.tb on CTGF expression in human lung fibroblasts are unclear. Our results revaled that M.tb caused time- and concentration-dependent increases in CTGF expression in human lung fibroblasts. A mechanistic investigation revealed that M.tb induced CTGF expression through TLR2 but not TLR4. The promoter activity assay indicated that M.tb-induced CTGF activity was mainly controlled by the promoter region at -747 to -184 bp, which contained signal transducer and activator of transcription 3 and activator protein 1 (AP-1) binding sites. Moreover, curcumin (AP-1 inhibitor) restrained M.tb-induced CTGF expression. M.tb also induced increases in AP-1 luciferase activity and DNA binding activity of c-Jun and c-Fos on the CTGF promoter. Furthermore, the knockdown of c-Jun by small interfering RNA attenuated M.tb-induced CTGF expression and AP-1 luciferase activity. A JNK inhibitor (SP600125) and a JNK dominant-negative mutant suppressed M.tb-induced CTGF expression. We also discovered that M.tb could induce the phosphorylation of JNK and c-Jun. Furthermore, SP600125 inhibited M.tb-induced c-Jun phosphorylation and AP-1- luciferase activity. M.tb-induced fibronectin expression was inhibited by anti-CTGF antibody. These results demonstrate that M.tb is activated through TLR2 to induce JNK activation, further increasing the DNA binding activity of c-Jun and c-Fos and finally inducing CTGF expression and extracellular matrix production.-Lee, H.-S., Hua, H.-S., Wang, C.-H., Yu, M.-C., Chen, B.-C., Lin, C.-H. Mycobacterium tuberculosis induces connective tissue growth factor expression through the TLR2-JNK-AP-1 pathway in human lung fibroblasts.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/biossíntese , Fibroblastos/metabolismo , Pulmão/metabolismo , MAP Quinase Quinase 4/metabolismo , Mycobacterium tuberculosis/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo , Tuberculose Pulmonar/metabolismo , Antracenos/farmacologia , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/patologia , MAP Quinase Quinase 4/antagonistas & inibidores , Elementos de Resposta , Tuberculose Pulmonar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...