Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 11(5)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934080

RESUMO

Type II polyketides are a group of secondary metabolites with various biological activities. In nature, biosynthesis of type II polyketides involves multiple enzymatic steps whereby key enzymes, including ketoacyl-synthase (KSα), chain length factor (KSß), and acyl carrier protein (ACP), are utilized to elongate the polyketide chain through a repetitive condensation reaction. During each condensation, the biosynthesis intermediates are covalently attached to KSα or ACP via a thioester bond and are then cleaved to release an elongated polyketide chain for successive postmodification. Despite its critical role in type II polyketide biosynthesis, the enzyme and its corresponding mechanism for type II polyketide chain release through thioester bond breakage have yet to be determined. Here, kinamycin was used as a model compound to investigate the chain release step of type II polyketide biosynthesis. Using a genetic knockout strategy, we confirmed that AlpS is required for the complete biosynthesis of kinamycins. Further in vitro biochemical assays revealed high hydrolytic activity of AlpS toward a thioester bond in an aromatic polyketide-ACP analog, suggesting its distinct role in offloading the polyketide chain from ACP during the kinamycin biosynthesis. Finally, we successfully utilized AlpS to enhance the heterologous production of dehydrorabelomycin in Escherichia coli by nearly 25-fold, which resulted in 0.50 g/liter dehydrorabelomycin in a simple batch-mode shake flask culture. Taken together, our results provide critical knowledge to gain an insightful understanding of the chain-releasing process during type II polyketide synthesis, which, in turn, lays a solid foundation for future new applications in type II polyketide bioproduction.


Assuntos
Vias Biossintéticas , Escherichia coli/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/classificação , Policetídeos/metabolismo , Metabolismo Secundário , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Escherichia coli/genética
2.
ACS Chem Biol ; 15(5): 1177-1183, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31825590

RESUMO

The heterologous biosynthesis of complex natural products has enabled access to polyketide, nonribosomal peptide, isoprenoid, and other compounds with wide-spanning societal value. Though several surrogate host systems exist, Escherichia coli is often a preferred choice due to its rapid growth kinetics and extensive molecular biology protocols. However, a persistent challenge to the utilization of E. coli has been the successful in vivo reconstitution of type II polyketide synthase (PKS) systems. In particular, gene expression of the ketosynthase (KS) components of the minimal PKS has consistently yielded insoluble protein products. In the following report, two type II PKS systems were functionally reconstituted in E. coli. The approach to do so relied upon the utilization of the native transcriptional coupling between the dimeric KS subunits, leading to soluble recombinant protein products and successful polyketide biosynthesis. Resulting strains produced 10 mg/L TW95c and 25 mg/L dehydrorabelomycin. Hence, the strategy offers a new option in the biosynthetic engineering efforts for the heterologous production of type II polyketide products using E. coli.


Assuntos
Produtos Biológicos/química , Proteínas de Escherichia coli/biossíntese , Escherichia coli/genética , Policetídeos/química , Antraquinonas/metabolismo , Produtos Biológicos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Isoquinolinas/metabolismo , Mutação , Naftoquinonas/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...