Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Obstet Gynaecol ; 44(1): 2372682, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39034630

RESUMO

BACKGROUND: Interleukin (IL)-2 is a key cytokine capable of modulating the immune response by activating natural killer (NK) cells. This study was recruited to explore the therapeutic potential of IL-2-activated NK-92 cells in endometriosis in vitro. METHODS: Ectopic endometrial stromal cells (EESCs) were isolated and co-cultured with IL-2-activated NK-92 cells at varying effector-to-target (E:T) ratios (1:0 [Control], 1:1, 1:3, and 1:9). The viability, cytotoxicity, and cell surface antigen expression of IL-2-activated NK-92 cells were assessed. The viability, apoptosis, invasion, and migration ability of EESCs co-cultured with NK-92 cells at different ratios were evaluated. The apoptosis-related proteins, invasion and migration-related proteins as well as MEK/ERK pathway were examined via western blot. Each experiment was repeated three times. RESULTS: IL-2 activation enhanced NK-92 cytotoxicity in a concentration-dependent manner. Co-culturing EESCs with IL-2-activated NK-92 cells at E:T ratios of 1:1, 1:3, and 1:9 reduced EESC viability by 20%, 45%, and 70%, respectively, compared to the control group. Apoptosis rates in EESCs increased in correlation with the NK-92 cell proportion, with the highest rate observed at a 1:9 ratio. Moreover, EESC invasion and migration were significantly inhibited by IL-2-activated NK-92 cells, with a 60% reduction in invasion and a 50% decrease in migration at the 1:9 ratio. Besides, the MEK/ERK signalling pathway was down-regulated in EESCs by IL-2-activated NK-92 cells. CONCLUSION: IL-2-activated NK-92 cells exhibit potent cytotoxic effects against EESCs. They promote EESC apoptosis and inhibit viability, invasion, and migration through modulating the MEK/ERK signalling pathway.


Endometriosis is a common chronic systemic disease affecting approximately 190 million women worldwide. However, clinical treatments for endometriosis remain challenging due to the scarcity of high-quality scientific evidence and conflicting available guidelines. This research was designed to explore whether interleukin (IL)-2 affected the progression of endometriosis by modulating endometrial stromal cell apoptosis and natural killer (NK) cell-mediated cytotoxicity, thereby providing new therapeutic methods for endometriosis.


Assuntos
Apoptose , Técnicas de Cocultura , Endometriose , Interleucina-2 , Células Matadoras Naturais , Humanos , Endometriose/patologia , Endometriose/imunologia , Feminino , Interleucina-2/farmacologia , Interleucina-2/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Apoptose/efeitos dos fármacos , Adulto , Endométrio/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Progressão da Doença , Sobrevivência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Cultivadas
2.
Front Genet ; 13: 1053845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685910

RESUMO

Objective: To explore the functions of mRNAs and lncRNAs in the occurrence of uterine leiomyomas (ULs) and further clarify the pathogenesis of UL by detecting the differential expression of mRNAs and lncRNAs in 10 cases of UL tissues and surrounding normal myometrial tissues by high-throughput RNA sequencing. Methods: The tissue samples of 10 patients who underwent hysterectomy for UL in Lianyungang Maternal and Child Health Hospital from January 2016 to December 2021 were collected. The differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified and further analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The protein-protein interaction network (PPI) was constructed in Cytoscape software. Functional annotation of the nearby target cis-DEmRNAs of DElncRNAs was performed with the Database for Annotation, Visualization, and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/). Meanwhile, the co-expression network of DElncRNA-DEmRNA was constructed in Cytoscape software. Results: A total of 553 DElncRNAs (283 upregulated DElncRNAs and 270 downregulated DElncRNAs) and 3,293 DEmRNAs (1,632 upregulated DEmRNAs and 1,661 downregulated DEmRNAs) were obtained. GO pathway enrichment analysis revealed that several important pathways were significantly enriched in UL such as blood vessel development, regulation of ion transport, and external encapsulating structure organization. In addition, cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and complement and coagulation cascades were significantly enriched in KEGG pathway enrichment analysis. A total of 409 DElncRNAs-nearby-targeted DEmRNA pairs were detected, which included 118 DElncRNAs and 136 DEmRNAs. Finally, we found that the top two DElncRNAs with the most nearby DEmRNAs were BISPR and AC012531.1. Conclusion: These results suggested that 3,293 DEmRNAs and 553 DElncRNAs were differentially expressed in UL tissue and normal myometrium tissue, which might be candidate-identified therapeutic and prognostic targets for UL and be considered as offering several possible mechanisms and pathogenesis of UL in the future.

3.
PLoS One ; 8(11): e79897, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312190

RESUMO

Preterm birth (PTB) is a live birth delivered before 37 weeks of gestation (GW). About one-third of PTBs result from the preterm premature rupture of membranes (PPROM). Up to the present, the pathogenic mechanisms underlying PPROM are not clearly understood. Here, we investigated the differential expression of long chain non-coding RNAs (lncRNAs) in placentas of PTBs with PPROM, and their possible involvement in the pathogenic pathways leading to PPROM. A total number of 1954, 776, and 1050 lncRNAs were identified with a microarray from placentas of PPROM (group A), which were compared to full-term birth (FTB) (group B), PTB (group C), and premature rupture of membrane (PROM) (group D) at full-term, respectively. Instead of investigating the individual pathogenic role of each lncRNA involved in the molecular mechanism underlying PPROM, we have focused on investigating the metabolic pathways and their functions to explore what is the likely association and how they are possibly involved in the development of PPROM. Six groups, including up-regulation and down-regulation in the comparisons of A vs. B, A vs. C, and A vs. D, of pathways were analyzed. Our results showed that 22 pathways were characterized as up-regulated 7 down-regulated in A vs. C, 18 up-regulated and 15 down-regulated in A vs. D, and 33 up-regulated and 7 down-regulated in A vs. B. Functional analysis showed pathways of infection and inflammatory response, ECM-receptor interactions, apoptosis, actin cytoskeleton, and smooth muscle contraction are the major pathogenic mechanisms involved in the development of PPROM. Characterization of these pathways through identification of lncRNAs opened new avenues for further investigating the epigenomic mechanisms of lncRNAs in PPROM as well as PTB.


Assuntos
Epigênese Genética , Epigenômica , Ruptura Prematura de Membranas Fetais/genética , RNA Longo não Codificante/genética , Adulto , Epigenômica/métodos , Feminino , Ruptura Prematura de Membranas Fetais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Gravidez , Nascimento Prematuro/genética , Nascimento Prematuro/metabolismo , RNA Longo não Codificante/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...