Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 13: 968902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337543

RESUMO

The Coronavirus disease pandemic of 2019 is a vast worldwide public health hazard, impacting people of all ages and socioeconomic statuses. Vaccination is one of the most effective methods of controlling a pandemic like COVID-19. This study aims to investigate the relationship between the number of vaccination injections and fear of COVID-19 and test whether beliefs benefit from vaccination COVID-19 mediate the effect of fear of COVID-19 on the number of vaccination injections. A total of 649 Vietnamese adults were enrolled online to finish answering, including scales The Health Belief Model (HBM) and The Fear of COVID-19 (FCV-19S), consisting of 340 (52.4%) males and 309 (47.6%) females. The data were analyzed using variance, regression, and a simple mediation model. The total score of COVID-19 fear was M = 22.26, SD = 5.49. Vietnamese fear of COVID-19 was at a medium level. Our results suggest that 18- to 20-year-olds are more fearful of COVID-19 than others. People who received the first dosage exhibited a greater fear of COVID-19 than those who received the second dose and were not inoculated. Additionally, the beliefs benefit of vaccination COVID-19 has a role in the relationship between the number of vaccination injections and fear of COVID-19. During the pandemic, adults in Vietnam are more afraid of COVID-19 than during prior outbreaks. Besides, the Vietnamese populace demonstrated a considerable demand for and high acceptability of the COVID-19 vaccine. The current study indicates that psychological counselors and therapists should counsel clients on the value of vaccination and address the fear of COVID-19 as public understanding of the benefits of vaccines increases. To further clarify the effect of this issue on the correlation between fear of COVID-19 and the number of vaccinations, the results of this study indicate that the existing vaccine communication factor for COVID-19 vaccination should be modified to increase confidence in the benefits of immunization.

2.
Nat Neurosci ; 23(7): 854-868, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424286

RESUMO

General anesthesia (GA) can produce analgesia (loss of pain) independent of inducing loss of consciousness, but the underlying mechanisms remain unclear. We hypothesized that GA suppresses pain in part by activating supraspinal analgesic circuits. We discovered a distinct population of GABAergic neurons activated by GA in the mouse central amygdala (CeAGA neurons). In vivo calcium imaging revealed that different GA drugs activate a shared ensemble of CeAGA neurons. CeAGA neurons also possess basal activity that mostly reflects animals' internal state rather than external stimuli. Optogenetic activation of CeAGA potently suppressed both pain-elicited reflexive and self-recuperating behaviors across sensory modalities and abolished neuropathic pain-induced mechanical (hyper-)sensitivity. Conversely, inhibition of CeAGA activity exacerbated pain, produced strong aversion and canceled the analgesic effect of low-dose ketamine. CeAGA neurons have widespread inhibitory projections to many affective pain-processing centers. Our study points to CeAGA as a potential powerful therapeutic target for alleviating chronic pain.


Assuntos
Anestésicos Gerais/farmacologia , Núcleo Central da Amígdala/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Dor/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Vias Neurais/efeitos dos fármacos , Percepção da Dor/efeitos dos fármacos , Percepção da Dor/fisiologia
3.
Biomaterials ; 178: 63-72, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29909038

RESUMO

Currently, no medical therapies exist to augment stroke recovery. Stem cells are an intriguing treatment option being evaluated, but cell-based therapies have several challenges including developing a stable cell product with long term reproducibility. Since much of the improvement observed from cellular therapeutics is believed to result from trophic factors the stem cells release over time, biomaterials are well-positioned to deliver these important molecules in a similar fashion. Here we show that essential trophic factors secreted from stem cells can be effectively released from a multi-component hydrogel system into the post-stroke environment. Using our polymeric system to deliver VEGF-A and MMP-9, we improved recovery after stroke to an equivalent degree as observed with traditional stem cell treatment in a rodent model. While VEGF-A and MMP-9 have many unique mechanisms of action, connective tissue growth factor (CTGF) interacts with both VEGF-A and MMP-9. With our hydrogel system as well as with stem cell delivery, the CTGF pathway is shown to be downregulated with improved stroke recovery.


Assuntos
Células-Tronco Neurais/transplante , Recuperação de Função Fisiológica/fisiologia , Transplante de Células-Tronco , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Engenharia Tecidual , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Humanos , Hidrogéis/farmacologia , Injeções , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Modelos Biológicos , Células-Tronco Neurais/efeitos dos fármacos , Ratos Nus , Recuperação de Função Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Biomaterials ; 142: 31-40, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28719819

RESUMO

Exogenous human neural progenitor cells (hNPCs) are promising stroke therapeutics, but optimal delivery conditions and exact recovery mechanisms remain elusive. To further elucidate repair processes and improve stroke outcomes, we developed an electrically conductive, polymer scaffold for hNPC delivery. Electrical stimulation of hNPCs alters their transcriptome including changes to the VEGF-A pathway and genes involved in cell survival, inflammatory response, and synaptic remodeling. In our experiments, exogenous hNPCs were electrically stimulated (electrically preconditioned) via the scaffold 1 day prior to implantation. After in vitro stimulation, hNPCs on the scaffold are transplanted intracranially in a distal middle cerebral artery occlusion rat model. Electrically preconditioned hNPCs improved functional outcomes compared to unstimulated hNPCs or hNPCs where VEGF-A was blocked during in vitro electrical preconditioning. The ability to manipulate hNPCs via a conductive scaffold creates a new approach to optimize stem cell-based therapy and determine which factors (such as VEGF-A) are essential for stroke recovery.


Assuntos
Condutividade Elétrica , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Polímeros/química , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Alicerces Teciduais/química , Animais , Infarto Encefálico/patologia , Estimulação Elétrica , Regulação da Expressão Gênica , Humanos , Masculino , Pirróis/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Nus , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...