Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pol J Microbiol ; 70(1): 3-11, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33815522

RESUMO

Aspergillus fumigatus is one of the ubiquitous fungi with airborne conidia, which accounts for most aspergillosis cases. In immunocompetent hosts, the inhaled conidia are rapidly eliminated. However, immunocompromised or immunodeficient hosts are particularly vulnerable to most Aspergillus infections and invasive aspergillosis (IA), with mortality from 50% to 95%. Despite the improvement of antifungal drugs over the last few decades, the therapeutic effect for IA patients is still limited and does not provide significant survival benefits. The drawbacks of antifungal drugs such as side effects, antifungal drug resistance, and the high cost of antifungal drugs highlight the importance of finding novel therapeutic and preventive approaches to fight against IA. In this article, we systemically addressed the pathogenic mechanisms, defense mechanisms against A. fumigatus, the immune response, molecular aspects of host evasion, and vaccines' current development against aspergillosis, particularly those based on AFMP4 protein, which might be a promising antigen for the development of anti-A. fumigatus vaccines.


Assuntos
Antígenos de Fungos/imunologia , Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Animais , Antígenos de Fungos/administração & dosagem , Antígenos de Fungos/genética , Aspergilose/microbiologia , Aspergilose/prevenção & controle , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/administração & dosagem , Proteínas Fúngicas/genética , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Humanos , Imunidade , Virulência
2.
Infect Immun ; 83(1): 339-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368117

RESUMO

Staphylococcus aureus is a common pathogen found in the community and in hospitals. Most notably, methicillin-resistant S. aureus is resistant to many antibiotics, which is a growing public health concern. The emergence of drug-resistant strains has prompted the search for alternative treatments, such as immunotherapeutic approaches. To date, most clinical trials of vaccines or of passive immunization against S. aureus have ended in failure. In this study, we investigated two ESAT-6-like proteins secreted by S. aureus, S. aureus EsxA (SaEsxA) and SaEsxB, as possible targets for a vaccine. Mice vaccinated with these purified proteins elicited high titers of anti-SaEsxA and anti-SaEsxB antibodies, but these antibodies could not prevent S. aureus infection. On the other hand, recombinant SaEsxA (rSaEsxA) and rSaEsxB could induce Th1- and Th17-biased immune responses in mice. Mice immunized with rSaEsxA and rSaEsxB had significantly improved survival rates when challenged with S. aureus compared with the controls. These findings indicate that SaEsxA and SaEsxB are two promising Th1 and Th17 candidate antigens which could be developed into multivalent and serotype-independent vaccines against S. aureus infection.


Assuntos
Bacteriemia/imunologia , Bacteriemia/prevenção & controle , Proteínas de Bactérias/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/genética , Feminino , Camundongos Endogâmicos BALB C , Vacinas Antiestafilocócicas/administração & dosagem , Vacinas Antiestafilocócicas/genética , Análise de Sobrevida , Células Th1/imunologia , Células Th17/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
3.
BMC Infect Dis ; 14: 197, 2014 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-24725777

RESUMO

BACKGROUND: Well-characterized mice models will afford a cheaper, easy-handling opportunity for a more comprehensive understanding of 2009 influenza A (H1N1) virus's pathogenesis potential. We aimed to provide a robust description of pulmonary immune responses in the mice infected by the virus. METHODS: BALB/c mice were inoculated intranasally with A/Beijing/501/2009(H1N1) (BJ501) and A/PR/8/34(H1N1) (PR8) viruses and compared for survival rate, viral replication, and kinetics of pulmonary immune responses. RESULTS: BJ501 virus replicated less efficiently in the lungs than PR8, and both caused lethal illness in the mice. The transient increases of pulmonary TNF-α 2 days post infection for BJ501 and of INF-γ and IL-10 at 6 days post infection for PR8 were observed. IL-2+ and IL-4+ secreting cells showed significant increase 12 days post infection, while IFN-γ+, IgG+ and IgA+ secreting cells increased 6 days post infection. The different patterns of pulmonary immunological parameters between two viruses were at most seen in IL-6, IL-17 secretion and IgG1/IgG2a ratio. CONCLUSIONS: The BALB/c mouse is evaluated as a good pathogenic model for studying BJ501 2009 H1N1 virus. The work provided some basic and detailed data, which might be referred when further evaluating innate and adapted pulmonary immune responses and local viral load in mice.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Citocinas/análise , Feminino , Vírus da Influenza A Subtipo H1N1/química , Pulmão/química , Camundongos , Camundongos Endogâmicos BALB C
4.
BMC Immunol ; 13: 54, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23013063

RESUMO

BACKGROUND: Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines. RESULT: To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited. CONCLUSION: Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus insoluble forms of the protein antigens. If an antigen, such as EGFP, is soluble and expressed at high levels, a low-copy plasmid-cytoplasmic expression strategy is recommended; since it provokes the highest B cell responses and also induces good T cell responses. If a T cell response is preferred, a eukaryotic expression plasmid or a chromosome-based, cytoplasmic-expression strategy is more effective. For insoluble antigens such as HA, an outer membrane expression strategy is recommended.


Assuntos
Antígenos de Bactérias/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Recombinação Genética , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Administração Oral , Animais , Antibacterianos/farmacologia , Feminino , Proteínas de Fluorescência Verde/metabolismo , Testes de Inibição da Hemaglutinação , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana/efeitos dos fármacos , Plasmídeos/genética , Recombinação Genética/genética , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/citologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...