Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 953783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204619

RESUMO

Meat and bone meal (MBM), as slaughterhouse waste, is a potential biostimulating agent, but its efficiency and reliability in composting are largely unknown. To access the MBM application to the composting process of asparagus straw rice, we followed the composting process for 60 days in 220-L composters and another 180 days in 20-L buckets in treatments applied with MBM or urea. The microbial succession was investigated by high-throughput sequencing. Compared with urea treatments, MBM addition stabilized pH and extended the thermophilic phase for 7 days. The germination index of MBM treatments was 24.76% higher than that of urea treatments. MBM also promoted higher microbial diversity and shifted community compositions. Organic matter and pH were the most significant factors that influence the bacterial and fungal community structure. At the genus level, MBM enriched relative abundances of organic matter-degrading bacteria (Alterococcus) and lignocellulose-degrading fungi (Trichoderma), as well as lignocellulolytic enzyme activities. Notably, MBM addition decreased sum abundances of plant pathogenic fungi of Phaeoacremonium, Acremonium, and Geosmithia from 17.27 to 0.11%. This study demonstrated the potential of MBM as an effective additive in asparagus straw composting, thus providing insights into the development of new industrial aerobic fermentation.

2.
Sci Total Environ ; 788: 147718, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34022578

RESUMO

The disposal of large amounts of biogas residue from anaerobically digested waste is a burden on environment protection. Porous biochars (BCs) were synthesized from biogas residue at three pyrolysis temperatures (300 °C, 550 °C, and 800 °C) and used to catalyze H2O2 for the degradation of benzene, toluene, ethylbenzene, xylene isomers (ortho, para, and meta), and styrene (BTEXS) to develop a new use for biogas residues. The prepared BCs were characterized through scanning electron microscopy, Brunauer-Emmett-Teller method, Fourier transform infrared spectrometry, and X-ray photoelectron spectroscopy. Results showed that BC800/H2O2 had the highest BTEXS degradation performance over 6 h. The degradation kinetic data were most consistent with the pseudo-second-order model. The different catalytic effect of the three BCs pyrolyzed at different temperatures were attributed to the dominant active sites (C-O/C-OH/C=C/C=O groups, pyridinic N, and graphitic N) that induced the production of reactive oxygen species (ROS). ROS-quenching experiments indicated that the degradation of BTEXS by BC300/H2O2, BC550/H2O2, and BC800/H2O2 involved ∙OH, ∙O2-, and 1O2. ∙OH was the dominant ROS in BC300/H2O2 and BC550/H2O2, and 1O2 was the dominant ROS in BC800/H2O2. Our findings provided new insight into the different catalytic mechanisms for BC production at different pyrolysis temperatures and demonstrated that a porous BC catalyst with high utilization value could be prepared from biogas residue and could hold considerable potential for application in BTEXS treatment in the future.


Assuntos
Peróxido de Hidrogênio , Pirólise , Carvão Vegetal , Temperatura
3.
Environ Sci Pollut Res Int ; 26(24): 24831-24839, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31240653

RESUMO

Adsorption is a typical method for air pollutant removal from flue gas. A CuS-modified active coke (CuS/AC) sorbent was developed to improve the elemental mercury removal efficiency from municipal solid waste incineration (MSWI) flue gas. The influences of the loading amount of CuS, reaction temperature, and flue gas components including O2, SO2, H2O, and HCl on Hg0 removal efficiency were investigated, respectively. The results showed that the mercury adsorption capacity of CuS/AC(20%) sorbent was about 7.17 mg/g with 50% breakthrough threshold, which is much higher than that of virgin active coke. The analysis of XPS indicated that HgS was the main species of mercury on spent CuS/AC, which implied that adsorption and oxidation were both included in Hg0 removal. S22- played a vital role in the oxidation of physically adsorbed Hg0. Meanwhile, the common components of MSWI flue gas exhibited no significant inhibition effect on Hg0 removal by CuS/AC sorbent. CuS/AC sorbent is a promising sorbent for the mercury removal from MSWI flue gas.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Coque , Cobre/química , Incineração , Mercúrio/isolamento & purificação , Adsorção , Poluentes Atmosféricos/química , Gases/química , Mercúrio/química , Compostos de Mercúrio/análise , Compostos de Mercúrio/isolamento & purificação , Oxirredução , Resíduos Sólidos , Enxofre/química , Dióxido de Enxofre/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...