Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 19(1): 153, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705000

RESUMO

Infections with the coccidian parasite Neospora caninum affect domestic and wild animals worldwide. In Australia, N. caninum infections cause considerable losses to the cattle industry with seroprevalence of 8.7% in beef and 10.9% in dairy cattle. Conversely, the role of wild animals, in maintaining the parasite cycle is also unclear. It is possible that native or introduced herbivorous species could be reservoir hosts of N. caninum in Australia, but to date, this has not been investigated. We report here the first large-scale screening of N. caninum antibodies in Australian wild deer, spanning three species (fallow, red and sambar deer). Consequently, we also assessed two commercial cELISA tests validated for detecting N. caninum in cattle for their ability to detect N. caninum antibodies in serum samples of wild deer. N. caninum antibodies were detected in 3.7% (7/189, 95% CI 1.8 - 7.45) of the wild deer serum samples collected in south-eastern Australia (n = 189), including 97 fallow deer (Dama dama), 14 red deer (Cervus elaphus), and 78 sambar deer (Rusa unicolor). Overall, our study provides the first detection of N. caninum antibodies in wild deer and quantifies deer's potential role in the sylvatic cycle of N. caninum.


Assuntos
Antígenos de Grupos Sanguíneos , Cervos , Animais , Bovinos , Animais Selvagens , Estudos Soroepidemiológicos , Austrália/epidemiologia , Meio Ambiente
2.
Clin Infect Dis ; 76(12): 2187-2195, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722416

RESUMO

BACKGROUND: Although single nucleotide polymorphisms (SNPs) in Mycoplasma genitalium parC contribute to fluoroquinolone treatment failure, data are limited for the homologous gene, gyrA. This study investigated the prevalence of gyrA SNPs and their contribution to fluoroquinolone failure. METHODS: Samples from 411 patients (male and female) undergoing treatment for M. genitalium infection (Melbourne Sexual Health Centre, March 2019-February 2020) were analyzed by Sanger sequencing (gyrA and parC). For patients treated with moxifloxacin (n = 194), the association between SNPs and microbiologic treatment outcome was analyzed. RESULTS: The most common parC SNP was G248T/S83I (21.1% of samples), followed by D87N (2.3%). The most common gyrA SNP was G285A/M95I (7.1%). Dual parC/gyrA SNPs were found in 8.6% of cases. One third of infections harboring parC G248T/S83I SNP had a concurrent SNP in gyrA conferring M95I. SNPs in gyrA cooccurred with parC S83I variations. Treatment failure was higher in patients with parC S83I/gyrA dual SNPs when compared with infections with single S83I SNP alone from analysis of (1) 194 cases in this study (81.2% vs 45.8%, P = .047), and (2) pooled analysis of a larger population of 535 cases (80.6% vs 43.2%; P = .0027), indicating a strong additive effect. CONCLUSIONS: Compared with parC S83I SNP alone, M. genitalium infections with dual mutations affecting parC/gyrA had twice the likelihood of failing moxifloxacin. Although antimicrobial resistance varies by region globally, these data indicate that gyrA should be considered as a target for future resistance assays in Australasia. We propose a strategy for the next generation of resistance-guided therapy incorporating parC and gyrA testing.


Assuntos
Infecções por Mycoplasma , Mycoplasma genitalium , Humanos , Masculino , Feminino , Moxifloxacina/uso terapêutico , Moxifloxacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Mycoplasma genitalium/genética , Farmacorresistência Bacteriana/genética , Infecções por Mycoplasma/microbiologia , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Mutação , Macrolídeos/farmacologia
3.
Front Cell Infect Microbiol ; 12: 883031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755840

RESUMO

Australian wild deer populations have significantly expanded in size and distribution in recent decades. Due to their role in pathogen transmission, these deer populations pose a biosecurity risk to the livestock industry. However, little is known about the infection status of wild deer in Australia. The intestinal parasite Entamoeba bovis has been previously detected in farm and wild ruminants worldwide, but its epidemiology and distribution in wild ruminants remain largely unexplored. To investigate this knowledge gap, faecal samples of wild deer and domestic cattle from south-eastern Australia were collected and analysed for the presence of Entamoeba spp. using PCR and phylogenetic analysis of the conserved 18S rRNA gene. E. bovis parasites were detected at high prevalence in cattle and wild deer hosts, and two distinct Entamoeba ribosomal lineages (RLs), RL1 and RL8, were identified in wild deer. Phylogenetic analysis further revealed the existance of a novel Entamoeba species in sambar deer and a novel Entamoeba RL in fallow deer. While we anticipated cross-species transmission of E. bovis between wild deer and cattle, the data generated in this study demonstrated transmission is yet to occur in Australia. Overall, this study has identified novel variants of Entamoeba and constitutes the first report of Entamoeba in fallow deer and sambar deer, expanding the host range of this parasite. Epidemiological investigations and continued surveillance of Entamoeba parasites in farm ruminants and wild animals will be required to evaluate pathogen emergence and transmission to livestock.


Assuntos
Cervos , Entamoeba , Parasitos , Animais , Animais Selvagens , Austrália/epidemiologia , Bovinos , Cervos/parasitologia , Entamoeba/genética , Gado , Filogenia , Ruminantes
4.
Viruses ; 14(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35215845

RESUMO

Endogenous retroviruses (ERVs) are the remnants of past retroviral infections that once invaded the host's germline and were vertically transmitted. ERV sequences have been reported in mammals, but their distribution and diversity in cervids are unclear. Using next-generation sequencing, we identified a nearly complete genome of an endogenous betaretrovirus in fallow deer (Dama dama). Further genomic analysis showed that this provirus, tentatively named cervid endogenous betaretrovirus 1 (CERV ß1), has typical betaretroviral genome features (gag-pro-pol-env) and the betaretrovirus-specific dUTPase domain. In addition, CERV ß1 pol sequences were detected by PCR in the six non-native deer species with wild populations in Australia. Phylogenetic analyses demonstrated that CERV ß1 sequences from subfamily Cervinae clustered as sister taxa to ERV-like sequences in species of subfamily Muntiacinae. These findings, therefore, suggest that CERV ß1 endogenisation occurred after the split of these two subfamilies (between 3.3 and 5 million years ago). Our results provide important insights into the evolution of betaretroviruses in cervids.


Assuntos
Betaretrovirus/isolamento & purificação , Cervos/virologia , Retrovirus Endógenos/isolamento & purificação , Animais , Animais Selvagens/genética , Animais Selvagens/virologia , Austrália , Betaretrovirus/genética , Cervos/genética , Retrovirus Endógenos/genética , Evolução Molecular , Genoma , Genoma Viral , Fases de Leitura Aberta , Filogenia , Provírus/genética
5.
Transbound Emerg Dis ; 69(4): 1862-1871, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34043877

RESUMO

Infection with Neospora caninum parasites is a leading cause of reproduction losses in cattle worldwide. In Australia, this loss is estimated to total AU$110 million every year. However, despite this considerable economic impact, the transmission cycle and the host(s) responsible for the sylvatic transmission of the parasite remain to be defined. Dingoes (Canis familiaris) have been suggested to be a wildlife host of N. caninum in Australia, but this is yet to be proven in a nonexperimental setting. This study aimed to determine the prevalence of natural N. caninum shedding in Australian wild dogs (defined as dingoes, dingo-domestic dog hybrids and feral dogs) by performing molecular analysis of faecal samples collected in wild dog populations in south-east Australia. Molecular analysis allowed host species identification and dingo purity testing, while genetic analysis of Coccidia and Neospora conserved genes allowed for parasite identification. Among the 115 samples collected and determined to belong to dingoes, dingo-domestic dog hybrids and foxes, Coccidian parasites were detected in 41 samples and N. caninum was identified in one sample of canine origin from South East Australia (Mansfield). Across all samples collected in Mansfield only 15 individuals were successfully identified by genotype. Thereby our study determined that 6.7% (1/15, 95% confidence intervals 1.2-29.9) of wild dogs were actively shedding N. caninum oocysts at this site. Further, only four individuals were identified at a second site (Swift Creek), and none were positive. This study conclusively confirms the role of wild dogs in the horizontal transmission of N. caninum parasites in Australia.


Assuntos
Doenças dos Bovinos , Coccidiose , Doenças do Cão , Neospora , Animais , Austrália/epidemiologia , Bovinos , Doenças dos Bovinos/parasitologia , Coccidiose/epidemiologia , Coccidiose/parasitologia , Coccidiose/veterinária , Doenças do Cão/parasitologia , Cães , Neospora/genética , Reação em Cadeia da Polimerase/veterinária
6.
Viruses ; 13(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34960681

RESUMO

The use of high-throughput sequencing has facilitated virus discovery in wild animals and helped determine their potential threat to humans and other animals. We report the complete genome sequence of a novel picornavirus identified by next-generation sequencing in faeces from Australian fallow deer. Genomic analysis revealed that this virus possesses a typical picornavirus-like genomic organisation of 7554 nt with a single open reading frame (ORF) encoding a polyprotein of 2225 amino acids. Based on the amino acid identity comparison and phylogenetic analysis of the P1, 2C, 3CD, and VP1 regions, this novel picornavirus was closely related to but distinct from known bopiviruses detected to date. This finding suggests that deer/bopivirus could belong to a novel species within the genus Bopivirus, tentatively designated as "Bopivirus C". Epidemiological investigation of 91 deer (71 fallow, 14 sambar and 6 red deer) and 23 cattle faecal samples showed that six fallow deer and one red deer (overall prevalence 7.7%, 95% confidence interval [CI] 3.8-15.0%) tested positive, but deer/bopivirus was undetectable in sambar deer and cattle. In addition, phylogenetic and sequence analyses indicate that the same genotype is circulating in south-eastern Australia. To our knowledge, this study reports for the first time a deer-origin bopivirus and the presence of a member of genus Bopivirus in Australia. Further epidemiological and molecular studies are needed to investigate the geographic distribution and pathogenic potential of this novel Bopivirus species in other domestic and wild animal species.


Assuntos
Animais Selvagens/virologia , Cervos/virologia , Infecções por Picornaviridae/veterinária , Picornaviridae/classificação , Picornaviridae/genética , Animais , Austrália/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Fezes/virologia , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Picornaviridae/isolamento & purificação , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/virologia , Prevalência , RNA Viral/genética
7.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452357

RESUMO

Picobirnaviruses (PBVs) have been detected in several species of animals worldwide; however, data pertaining to their presence in Australian wild and domestic animals are limited. Although PBVs are mostly found in faecal samples, their detection in blood and respiratory tract samples raises questions concerning their tropism and pathogenicity. We report here PBV detection in wild deer and cattle from southeastern Australia. Through metagenomics, the presence of PBV genogroups I (GI) and II (GII) were detected in deer serum and plasma. Molecular epidemiology studies targeting the partial RNA-dependent RNA polymerase gene were performed in a wide range of specimens (serum, faeces, spleen, lung, nasal swabs, and trachea) collected from wild deer and cattle, with PCR amplification obtained in all specimen types except lung and spleen. Our results reveal the predominance of GI and concomitant detection of both genogroups in wild deer and cattle. In concordance with other studies, the detected GI sequences displayed high genetic diversity, however in contrast, GII sequences clustered into three distinct clades. Detection of both genogroups in the upper respiratory tract (trachea and nasal swab) of deer in the present study gives more evidence about the respiratory tract tropism of PBV. Although much remains unknown about the epidemiology and tropism of PBVs, our study suggests a wide distribution of these viruses in southeastern Australia.


Assuntos
Genótipo , Picobirnavirus/genética , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/veterinária , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/veterinária , Animais , Animais Selvagens/virologia , Austrália/epidemiologia , Bovinos/virologia , Cervos/virologia , Fezes/virologia , Variação Genética , Genoma Viral , Filogenia , Picobirnavirus/classificação , RNA Viral/genética , Infecções Respiratórias/virologia
8.
Int J Parasitol Parasites Wildl ; 15: 262-269, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34277336

RESUMO

Wild animals are natural reservoir hosts for a variety of pathogens that can be transmitted to other wildlife, livestock, other domestic animals, and humans. Wild deer (family Cervidae) in Europe, Asia, and North and South America have been reported to be infected with gastrointestinal and vector-borne parasites. In Australia, wild deer populations have expanded considerably in recent years, yet there is little information regarding which pathogens are present and whether these pathogens pose biosecurity threats to humans, wildlife, livestock, or other domestic animals. To address this knowledge gap, PCR-based screening for five parasitic genera was conducted in blood samples (n = 243) sourced from chital deer (Axis axis), fallow deer (Dama dama), rusa deer (Rusa timorensis) and sambar deer (Rusa unicolor) sampled in eastern Australia. These blood samples were tested for the presence of DNA from Plasmodium spp., Trypanosoma spp., Babesia spp., Theileria spp. and Sarcocystis spp. Further, the presence of antibodies against Babesia bovis was investigated in serum samples (n = 105) by immunofluorescence. In this study, neither parasite DNA nor antibodies were detected for any of the five genera investigated. These results indicate that wild deer are not currently host reservoirs for Plasmodium, Trypanosoma, Babesia, Theileria or Sarcocystis parasites in eastern Australia. We conclude that in eastern Australia, wild deer do not currently play a significant role in the transmission of these parasites. This survey represents the first large-scale molecular study of its type in Australian wild deer and provides important baseline information about the parasitic infection status of these animals. The expanding populations of wild deer throughout Australia warrant similar surveys in other parts of the country and surveillance efforts to continually assess the level of threat wild deer could pose to humans, wildlife, livestock and other domestic animals.

9.
Viruses ; 12(7)2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668730

RESUMO

Since deer were introduced into Australia in the mid-1800s, their wild populations have increased in size and distribution, posing a potential risk to the livestock industry, through their role in pathogen transmission cycles. In comparison to livestock, there are limited data on viral infections in all wildlife, including deer. The aim of this study was to assess blood samples from wild Australian deer for serological evidence of exposure to relevant viral livestock diseases. Blood samples collected across eastern Australia were tested by ELISA to detect antigens and antibodies against Pestivirus and antibodies against bovine herpesvirus 1. A subset of samples was also assessed by RT-PCR for Pestivirus, Simbu serogroup, epizootic hemorrhagic disease virus and bovine ephemeral fever virus. Our findings demonstrated a very low seroprevalence (3%) for ruminant Pestivirus, and none of the other viruses tested were detected. These results suggest that wild deer may currently be an incidental spill-over host (rather than a reservoir host) for Pestivirus. However, deer could be a future source of viral infections for domestic animals in Australia. Further investigations are needed to monitor pathogen activity and quantify possible future infectious disease impacts of wild deer on the Australian livestock industry.


Assuntos
Animais Selvagens/virologia , Cervos/virologia , Infecções por Pestivirus/veterinária , Pestivirus , Animais , Austrália/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Masculino , Infecções por Pestivirus/epidemiologia , Vigilância da População , Prevalência , Estudos Soroepidemiológicos
10.
J Clin Virol ; 85: 40-43, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27833060

RESUMO

Enterovirus-71 (EV71) was first isolated in California, United States in 1969, belongs to the genus Enterovirus, family Picornaviridae. Although infection normally causes mild, often undiagnosed illness, it can cause central nervous system infections that could turn fatal. Based on VP1 gene analysis, EV71 has been classified into six separate genotypes. Although the molecular epidemiology of EV71 has been well described via studies originating from Asia and Europe, it is mostly unknown in South America. From our study, four EV71 isolates from Peru were characterized using phylogenetic methods to determine their relationship with known reference strains. These four Peruvian EV71 isolates from between 2006 and 2009 were analyzed by RT-PCR using primers capable of amplifying the entire VP1 gene. Reference strains representing all six known genotypes were used to determine any recognizable phylogenetic relationships. In fact, all of our isolates clustered together within the genotype C1 lineage- separate from Asian, European, North American, and Australian strains. We present evidence that EV71 genotype C1 exists in Peru, and this is the first such report documenting EV71 genotype C1 circulating in South America. Gathering additional isolates will help elucidate a more complete global epidemiological picture of EV71 infections.


Assuntos
Enterovirus Humano A/classificação , Enterovirus Humano A/isolamento & purificação , Infecções por Enterovirus/virologia , Genótipo , Análise por Conglomerados , Enterovirus Humano A/genética , Infecções por Enterovirus/epidemiologia , Humanos , Peru/epidemiologia , Filogenia , Análise de Sequência de DNA , Proteínas Estruturais Virais/genética
11.
Int J Infect Dis ; 52: 83-85, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27720944

RESUMO

OBJECTIVES: To determine the molecular epidemiology of seven coxsackievirus A16 (CVA16) strains previously reported by this research group. METHODS: Full-length VP1 and VP4 sequences were obtained and phylogenetic analyses were performed. RESULTS: Six strains were classified as genotype C. Moreover, one divergent strain not clustered in any of the three currently reported genotypes was found. CONCLUSION: This is the first report of CVA16 in Peru and provides valuable baseline data about its potential distribution in South America, as well as evidence of a potential divergent genotype that has never before been reported.


Assuntos
Infecções por Coxsackievirus/virologia , Enterovirus/classificação , Criança , Pré-Escolar , Infecções por Coxsackievirus/epidemiologia , Enterovirus/isolamento & purificação , Enterovirus Humano A/classificação , Feminino , Genótipo , Humanos , Lactente , Masculino , Epidemiologia Molecular , Dados de Sequência Molecular , Peru , Filogenia , Vigilância de Evento Sentinela , América do Sul
12.
Virol J ; 11: 169, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25244984

RESUMO

BACKGROUND: Enteroviruses (EVs) are a common cause of respiratory tract infections and are classified into seven species (EVA-D and rhinoviruses [RHVs] A-C) with more than 200 different serotypes. Little is known about the role of non-RHV EVs in respiratory infections in South America. The aim of this study was to describe the epidemiology of non-RHV EVs detected in patients with influenza-like illness enrolled in a passive surveillance network in Peru. METHODS: Throat swabs and epidemiological data were collected from participants after obtaining verbal consent. Viral isolation was performed in cell culture and identified by immunofluorescence assay. Serotype identification of EV isolates was performed using commercial monoclonal antibodies. Identification of non-serotypeable isolations was carried out by reverse transcriptase-PCR, followed by sequencing. RESULTS: Between 2005 and 2010, 24,239 samples were analyzed, and 9,973 (41.1%) possessed at least one respiratory virus. EVs were found in 175 samples (0.7%). Our results revealed a clear predominance of EVB species, 90.9% (159/175). No EVDs were isolated. The mean and median ages of EV-positive subjects were 9.1 and 4.0 years, respectively, much younger than the population sampled, 17.6 and 12.0 years. Sixteen serotypes were identified, four EVA, 11 EVB, and one EVC species. The most common serotypes were coxsackievirus B1, coxsackievirus B2, coxsackievirus B5, and coxsackievirus B3. CONCLUSION: This study provides data about the serotypes of EVs circulating in Peru and sets the need for further studies.


Assuntos
Infecções por Enterovirus/virologia , Enterovirus/isolamento & purificação , Infecções Respiratórias/virologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Infecções por Enterovirus/epidemiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Peru/epidemiologia , Vigilância da População , Infecções Respiratórias/epidemiologia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...