Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 254: 104477, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990819

RESUMO

Statin-associated muscle symptoms (SAMS) are the main side effects of statins. Currently, there are no effective biomarkers for accurate clinical diagnosis. Urine is not subject to homeostatic control and therefore accumulates early changes, making it an ideal biomarker source. We therefore examined urine proteome changes associated with SAMS. Here, we established a SAMS rat model by intragastric intubation with simvastatin (80 mg/kg). Biochemical analyses and hematoxylin and eosin staining were used to evaluate the degree of muscle injury. The urine proteome on days 3, 6, 9 and 14 was profiled using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Differential proteins on day 14 of SAMS were mainly associated with glycolysis/gluconeogenesis, pyruvate metabolism, metabolism of reactive oxygen species and apoptosis, which were associated with the pathological mechanism of SAMS. Among the 14 differential proteins on day 3, Fibrinogen gamma chain (FIBG), Osteopontin (OSTP) and C-reactive protein (CRP) were associated with muscle damage, while EH domain-containing protein 1(EHD1), Cubilin (CUBN) and Fibronectin (FINC) were associated with the pathogenic mechanisms of SAMS. Our preliminary results indicated that the urine proteome can reflect early changes in the SAMS rat model, providing the potential for monitoring drug side effects in future clinical research. SIGNIFICANCE: This study demonstrate that the early muscle damage caused by simvastatin can be reflected in urinary proteins. The urine proteome also has the potential to reflect the pharmacology and toxicology of drugs in future clinical research.


Assuntos
Proteoma , Sinvastatina , Animais , Biomarcadores , Cromatografia Líquida , Músculo Esquelético/química , Proteoma/análise , Ratos , Sinvastatina/toxicidade , Espectrometria de Massas em Tandem , Proteínas de Transporte Vesicular
2.
Front Psychiatry ; 12: 700149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658947

RESUMO

Major depressive disorder (MDD) is a common mental disorder that can cause substantial impairments in quality of life. Clinical treatment is usually built on a trial-and-error method, which lasts ~12 weeks to evaluate whether the treatment is efficient, thereby leading to some inefficient treatment measures. Therefore, we intended to identify early candidate urine biomarkers to predict efficient treatment response in MDD patients. In this study, urine samples were collected twice from 19 respondent and 10 non-respondent MDD patients receiving 0-, 2-, and 12-week treatments with escitalopram. Differential urinary proteins were subsequently analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Our two pilot tests suggested that the urine proteome reflects changes associated with major depressive disorder at the early stage of treatment measures. On week 2, 20 differential proteins were identified in the response group compared with week 0, with 14 of these proteins being associated with the mechanisms of MDD. In the non-response group, 60 differential proteins were identified at week 2, with 28 of these proteins being associated with the mechanisms of MDD. In addition, differential urinary proteins at week 2 between the response and non-response groups can be clearly distinguished by using orthogonal projection on latent structure-discriminant analysis (OPLS-DA). Our small pilot tests indicated that the urine proteome can reflect early effects of escitalopram therapy between the response and non-response groups since at week 2, which may provide potential early candidate urine biomarkers to predict efficient treatment measures in MDD patients.

3.
Transl Pediatr ; 10(7): 1765-1778, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34430425

RESUMO

BACKGROUND: Autism is a complex neurodevelopmental disorder. Objective and reliable biomarkers are crucial for the clinical diagnosis of autism. Urine can accumulate early changes of the whole body and is a sensitive source for disease biomarkers. METHODS: The data-independent acquisition (DIA) strategy was used to identify differential proteins in the urinary proteome between autistic and non-autistic children aged 3-7 years. Receiver operating characteristic (ROC) curves were developed to evaluate the diagnostic performance of differential proteins. RESULTS: A total of 118 differential proteins were identified in the urine between autistic and non-autistic children, of which 18 proteins were reported to be related to autism. Randomized grouping statistical analysis indicated that 91.5% of the differential proteins were reliable. Functional analysis revealed that some differential proteins were associated with axonal guidance signaling, endocannabinoid developing neuron pathway, synaptic long-term depression, agrin interactions at neuromuscular junction, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling and synaptogenesis signaling pathway. The combination of cadherin-related family member 5 (CDHR5) and vacuolar protein sorting-associated protein 4B (VPS4B) showed the best discriminative performance between autistic and non-autistic children with an area under the curve (AUC) value of 0.987. CONCLUSIONS: The urinary proteome could distinguish between autistic children and non-autistic children. This study will provide a promising approach for future biomarker research of neuropsychiatric disorders.

4.
J Pharm Biomed Anal ; 199: 114064, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33862505

RESUMO

Major depressive disorder (MDD) is a prevalent complex psychiatric disorder, and there are no effective biomarkers for clinical diagnosis. Urine is not subjected to homeostatic control, allowing it to reflect the sensitive changes that occur in various diseases. In this study, we examined the urine proteome changes in a chronic unpredictable mild stress mouse model of MDD. Male C57BL/6 mice were subjected to chronic unpredictable mild stress for 5 weeks. The tail suspension test and sucrose consumption test were then applied to evaluate depression-like behaviors. The urine proteomes on day 0 and day 36 in the CUMS group were profiled by liquid chromatography coupled with tandem mass spectrometry (LCMS/MS). A total of 36 differential proteins were identified, 19 of which have been associated with the pathogenic mechanisms of MDD. There was an average of two differential proteins that were identified through 1,048,574 random combination statistical analyses, indicating that at least 95 % of the differential proteins were reliable. The differential proteins were mainly associated with blood coagulation, inflammatory responses and central nervous system development. Our preliminary results indicated that the urine proteome can reflect changes associated with MDD in the CUMS model, which provides potential clues for the diagnosis of MDD.


Assuntos
Transtorno Depressivo Maior , Animais , Depressão , Modelos Animais de Doenças , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma , Estresse Psicológico
5.
Sci Rep ; 10(1): 11709, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678190

RESUMO

Early detection of cancer is essential for effective intervention. Urine has been used to reflect early changes in various tumor-bearing models. However, urine has not been used to predict whether tumors will form in animal models. In this study, a cancer model was established by tail vein injection of 2 million NuTu-19 tumor cells. Urine samples were randomly selected from tumor-forming and non-tumor-forming rats on day 0/12/27/39/52 and were analyzed by label-free and parallel reaction monitoring targeted proteomic quantitative analyses. In tumor-forming rats, differential proteins were associated with tumor cell migration, TGF-ß signaling and the STAT3 pathway. A total of 9 urinary proteins showed significant changes in the early phase of lung tumor formation in all eight tumor-bearing rats. Differential proteins in non-tumor-forming rats were associated with glutathione biosynthesis, IL-12 signaling and vitamin metabolism. A total of 12 urinary proteins changed significantly in the early phase in all seven non-tumor-forming rats. Our small-scale pilot study indicated that (1) the urinary proteome reflects early changes during lung tumor formation and that (2) the urinary proteome can distinguish early tumor-forming rats from non-tumor-forming rats.


Assuntos
Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/urina , Neoplasias Ovarianas/patologia , Proteoma/análise , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Feminino , Neoplasias Pulmonares/diagnóstico , Projetos Piloto , Proteômica/métodos , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...