Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
EMBO Rep ; 18(9): 1660-1670, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28729461

RESUMO

Archaeal swimming motility is driven by archaella: rotary motors attached to long extracellular filaments. The structure of these motors, and particularly how they are anchored in the absence of a peptidoglycan cell wall, is unknown. Here, we use electron cryotomography to visualize the archaellar basal body in vivo in Thermococcus kodakaraensis KOD1. Compared to the homologous bacterial type IV pilus (T4P), we observe structural similarities as well as several unique features. While the position of the cytoplasmic ATPase appears conserved, it is not braced by linkages that extend upward through the cell envelope as in the T4P, but rather by cytoplasmic components that attach it to a large conical frustum up to 500 nm in diameter at its base. In addition to anchoring the lophotrichous bundle of archaella, the conical frustum associates with chemosensory arrays and ribosome-excluding material and may function as a polar organizing center for the coccoid cells.


Assuntos
Extensões da Superfície Celular/ultraestrutura , Citoplasma/ultraestrutura , Thermococcus/fisiologia , Thermococcus/ultraestrutura , Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/fisiologia , Microscopia Crioeletrônica , Citoplasma/fisiologia , Flagelos/fisiologia , Flagelos/ultraestrutura , Thermococcus/citologia
2.
Environ Microbiol Rep ; 7(3): 414-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25581459

RESUMO

Chemotaxis allows cells to sense and respond to their environment. In Bacteria, stimuli are detected by arrays of chemoreceptors that relay the signal to a two-component regulatory system. These arrays take the form of highly stereotyped super-lattices comprising hexagonally packed trimers-of-receptor-dimers networked by rings of histidine kinase and coupling proteins. This structure is conserved across chemotactic Bacteria, and between membrane-bound and cytoplasmic arrays, and gives rise to the highly cooperative, dynamic nature of the signalling system. The chemotaxis system, absent in eukaryotes, is also found in Archaea, where its structural details remain uncharacterized. Here we provide evidence that the chemotaxis machinery was not present in the last archaeal common ancestor, but rather was introduced in one of the waves of lateral gene transfer that occurred after the branching of Eukaryota but before the diversification of Euryarchaeota. Unlike in Bacteria, the chemotaxis system then evolved largely vertically in Archaea, with very few subsequent successful lateral gene transfer events. By electron cryotomography, we find that the structure of both membrane-bound and cytoplasmic chemoreceptor arrays is conserved between Bacteria and Archaea, suggesting the fundamental importance of this signalling architecture across diverse prokaryotic lifestyles.


Assuntos
Archaea/genética , Archaea/fisiologia , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Quimiotaxia , Redes Reguladoras de Genes , Sequência Conservada , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...