Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(38): 20025-20032, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32996977

RESUMO

Harvesting solar energy for artificial photosynthesis is an emerging field in alternative energy research. In this work, the photocatalytic properties of InX(X = S, Se)/transition metal disulfide (MoS2 and WS2) van der Waals heterostructures have been investigated. The calculation results indicate that these heterostructures exhibit improved photocatalytic performance over that of isolated InX or transition metal disulfide monolayers. The studied heterostructures all have type-II band alignment with holes and electrons located at the TMD and InX side, respectively. This facilitates the spatial separation of photogenerated carriers and improves the photocatalytic efficiency. The carrier mobility of the designed heterostructures can be boosted compared with the isolated monolayers, thus enhancing the carrier transport properties. Moreover, the strain-tuned heterostructures can prominently manipulate the light-harvesting capability especially from the visible light to infrared light range. Among the studied heterostructures, InSe/MoS2 with the suitable band edge positions, excellent transport properties and strain tolerance, and the lowest overpotential for oxygen evolution, stands out as the most promising candidate for photocatalytic applications. This work opens an avenue for the design of highly efficient heterostructure photocatalysts for solar-to-energy applications.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 659-662, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268414

RESUMO

Inertial measurement units (IMUs) are becoming increasingly prevalent as a method for low cost and portable biomechanical analysis. However, to date they have not been accepted into routine clinical practice. This is often due to a disconnect between translating the data collected by the sensors into meaningful and actionable information for end users. This paper outlines the work completed by our group in attempting to achieve this. We discuss the conceptual framework involved in our work, the methodological approach taken in analysing sensor signals and discuss possible application models. Our work indicates that IMU based systems have the potential to bridge the gap between laboratory and clinical movement analysis. Future studies will focus on collecting a diverse range of movement data and using more sophisticated data analysis techniques to refine systems.


Assuntos
Exercício Físico , Sistema Musculoesquelético/lesões , Algoritmos , Fenômenos Biomecânicos , Humanos , Movimento/fisiologia , Risco
3.
Protoplasma ; 223(2-4): 111-20, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15221516

RESUMO

Mature embryo sacs of the maize mutant indeterminate gametophyte1 displayed different cellular patterns compared to those of the wild type. About 40% of the ig1 embryo sacs contained three or more synergids and two or more egg cells at the micropylar end. During fertilization in embryo sacs with two synergids, both of them frequently degenerated and were penetrated by two pollen tubes. 75% of the embryo sacs containing three or more synergid cells were penetrated by two or more pollen tubes, although most of them had only one degenerated synergid. Multiple fusions between the sperm cells and eggs frequently occurred in the same embryo sac, which subsequently generated multiple embryos. There were two or more central cells in about 33% of ig1 embryo sacs. The largest central cell was usually adjacent to the egg apparatus and contained two unfused polar nuclei, while those extra central cells located at the chalazal end usually had a single nucleus. Fertilization occurred only between the male gamete and the largest binucleate central cell. The extra central cells eventually degenerated after fertilization.


Assuntos
Fertilização/fisiologia , Genes de Plantas/genética , Mutação/genética , Zea mays/genética , Zea mays/fisiologia , Proteínas de Plantas/genética , Zea mays/citologia
4.
Sci China C Life Sci ; 45(2): 211-24, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18763081

RESUMO

Studies of the living embryo sacs of Torenia fournieri reveal that the actin cytoskeleton undergoes dramatic changes that correlate with nuclear migration within the central cell and the primary endosperm. Before pollination, actin filaments appear as short bundles randomly distributed in the cortex of the central cell. Two days after anthesis, they become organized into a distinct actin network. At this stage the secondary nucleus, which is located in the central region of the central cell, possesses an associated array of short actin filaments. Soon after pollination, the actin filaments become fragmented in the micropylar end and the secondary nucleus is located next to the egg apparatus. After fertilization, the primary endosperm nucleus moves away from the egg cell and actin filaments reorganize into a prominent network in the cytoplasm of the primary endosperm. Disruption of the actin cytoskeleton with latrunculin A and cytochalasin B indicates that actin is involved in the migration of the nucleus in the central cell. Our data also suggest that the dynamics of actin cytoskeleton may be responsible for the reorganization of the central cell and primary endosperm cytoplasm during fertilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...