Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050502

RESUMO

The access control (AC) system in an IoT (Internet of Things) context ensures that only authorized entities have access to specific devices and that the authorization procedure is based on pre-established rules. Recently, blockchain-based AC systems have gained attention within research as a potential solution to the single point of failure issue that centralized architectures may bring. Moreover, zero-knowledge proof (ZKP) technology is included in blockchain-based AC systems to address the issue of sensitive data leaking. However, current solutions have two problems: (1) systems built by these works are not adaptive to high-traffic IoT environments because of low transactions per second (TPS) and high latency; (2) these works cannot fully guarantee that all user behaviors are honest. In this work, we propose a blockchain-based AC system with zero-knowledge rollups to address the aforementioned issues. Our proposed system implements zero-knowledge rollups (ZK-rollups) of access control, where different AC authorization requests can be grouped into the same batch to generate a uniform ZKP, which is designed specifically to guarantee that participants can be trusted. In low-traffic environments, sufficient experiments show that the proposed system has the least AC authorization time cost compared to existing works. In high-traffic environments, we further prove that based on the ZK-rollups optimization, the proposed system can reduce the authorization time overhead by 86%. Furthermore, the security analysis is presented to show the system's ability to prevent malicious behaviors.

2.
Sensors (Basel) ; 22(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36433392

RESUMO

In the task of image instance segmentation, semi-supervised instance segmentation algorithms have received constant research attention over recent years. Among these algorithms, algorithms based on transfer learning are better than algorithms based on pseudo-label generation in terms of segmentation performance, but they can not make full use of the relevant characteristics of source tasks. To improve the accuracy of these algorithms, this work proposes a semi-supervised instance segmentation model AFT-Mask (attention-based feature transfer Mask R-CNN) based on category attention. The AFT-Mask model takes the result of object-classification prediction as "attention" to improve the performance of the feature-transfer module. In detail, we designed a migration-optimization module for connecting feature migration and classification prediction to enhance segmentation-prediction accuracy. To verify the validity of the AFT-Mask model, experiments were conducted on two types of datasets. Experimental results show that the AFT-Mask model can achieve effective knowledge transfer and improve the performance of the benchmark model on semi-supervised instance segmentation.


Assuntos
Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...