Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mob DNA ; 10: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899333

RESUMO

BACKGROUND: Transposable elements make up a significant portion of the human genome. Accurately locating these mobile DNAs is vital to understand their role as a source of structural variation and somatic mutation. To this end, laboratories have developed strategies to selectively amplify or otherwise enrich transposable element insertion sites in genomic DNA. RESULTS: Here we describe a technique, Transposon Insertion Profiling by sequencing (TIPseq), to map Long INterspersed Element 1 (LINE-1, L1) retrotransposon insertions in the human genome. This method uses vectorette PCR to amplify species-specific L1 (L1PA1) insertion sites followed by paired-end Illumina sequencing. In addition to providing a step-by-step molecular biology protocol, we offer users a guide to our pipeline for data analysis, TIPseqHunter. Our recent studies in pancreatic and ovarian cancer demonstrate the ability of TIPseq to identify invariant (fixed), polymorphic (inherited variants), as well as somatically-acquired L1 insertions that distinguish cancer genomes from a patient's constitutional make-up. CONCLUSIONS: TIPseq provides an approach for amplifying evolutionarily young, active transposable element insertion sites from genomic DNA. Our rationale and variations on this protocol may be useful to those mapping L1 and other mobile elements in complex genomes.

2.
Proc Natl Acad Sci U S A ; 114(5): E733-E740, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096347

RESUMO

Mammalian genomes are replete with interspersed repeats reflecting the activity of transposable elements. These mobile DNAs are self-propagating, and their continued transposition is a source of both heritable structural variation as well as somatic mutation in human genomes. Tailored approaches to map these sequences are useful to identify insertion alleles. Here, we describe in detail a strategy to amplify and sequence long interspersed element-1 (LINE-1, L1) retrotransposon insertions selectively in the human genome, transposon insertion profiling by next-generation sequencing (TIPseq). We also report the development of a machine-learning-based computational pipeline, TIPseqHunter, to identify insertion sites with high precision and reliability. We demonstrate the utility of this approach to detect somatic retrotransposition events in high-grade ovarian serous carcinoma.


Assuntos
Elementos Nucleotídeos Longos e Dispersos/genética , Neoplasias Ovarianas/genética , Algoritmos , Feminino , Genoma Humano , Humanos , Aprendizado de Máquina , Reação em Cadeia da Polimerase/métodos
3.
Mob DNA ; 7: 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27843500

RESUMO

BACKGROUND: Gliomas are the most common primary brain tumors in adults. We sought to understand the roles of endogenous transposable elements in these malignancies by identifying evidence of somatic retrotransposition in glioblastomas (GBM). We performed transposon insertion profiling of the active subfamily of Long INterspersed Element-1 (LINE-1) elements by deep sequencing (TIPseq) on genomic DNA of low passage oncosphere cell lines derived from 7 primary GBM biopsies, 3 secondary GBM tissue samples, and matched normal intravenous blood samples from the same individuals. RESULTS: We found and PCR validated one somatically acquired tumor-specific insertion in a case of secondary GBM. No LINE-1 insertions present in primary GBM oncosphere cultures were missing from corresponding blood samples. However, several copies of the element (11) were found in genomic DNA from blood and not in the oncosphere cultures. SNP 6.0 microarray analysis revealed deletions or loss of heterozygosity in the tumor genomes over the intervals corresponding to these LINE-1 insertions. CONCLUSIONS: These findings indicate that LINE-1 retrotransposon can act as an infrequent insertional mutagen in secondary GBM, but that retrotransposition is uncommon in these central nervous system tumors as compared to other neoplasias.

4.
Mob DNA ; 7: 20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27807467

RESUMO

BACKGROUND: The National Cancer Institute-60 (NCI-60) cell lines are among the most widely used models of human cancer. They provide a platform to integrate DNA sequence information, epigenetic data, RNA and protein expression, and pharmacologic susceptibilities in studies of cancer cell biology. Genome-wide studies of the complete panel have included exome sequencing, karyotyping, and copy number analyses but have not targeted repetitive sequences. Interspersed repeats derived from mobile DNAs are a significant source of heritable genetic variation, and insertions of active elements can occur somatically in malignancy. METHOD: We used Transposon Insertion Profiling by microarray (TIP-chip) to map Long INterspersed Element-1 (LINE-1, L1) and Alu Short INterspersed Element (SINE) insertions in cancer genes in NCI-60 cells. We focused this discovery effort on annotated Cancer Gene Index loci. RESULTS: We catalogued a total of 749 and 2,100 loci corresponding to candidate LINE-1 and Alu insertion sites, respectively. As expected, these numbers encompass previously known insertions, polymorphisms shared in unrelated tumor cell lines, as well as unique, potentially tumor-specific insertions. We also conducted association analyses relating individual insertions to a variety of cellular phenotypes. CONCLUSIONS: These data provide a resource for investigators with interests in specific cancer gene loci or mobile element insertion effects more broadly. Our data underscore that significant genetic variation in cancer genomes is owed to LINE-1 and Alu retrotransposons. Our findings also indicate that as large numbers of cancer genomes become available, it will be possible to associate individual transposable element insertion variants with molecular and phenotypic features of these malignancies.

5.
Nat Med ; 21(9): 1060-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26259033

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed after the disease has metastasized; it is among the most lethal forms of cancer. We recently described aberrant expression of an open reading frame 1 protein, ORF1p, encoded by long interspersed element-1 (LINE-1; L1) retrotransposon, in PDAC. To test whether LINE-1 expression leads to somatic insertions of this mobile DNA, we used a targeted method to sequence LINE-1 insertion sites in matched PDAC and normal samples. We found evidence of 465 somatic LINE-1 insertions in 20 PDAC genomes, which were absent from corresponding normal samples. In cases in which matched normal tissue, primary PDAC and metastatic disease sites were available, insertions were found in primary and metastatic tissues in differing proportions. Two adenocarcinomas secondarily involving the pancreas, but originating in the stomach and duodenum, acquired insertions with a similar discordance between primary and metastatic sites. Together, our findings show that LINE-1 contributes to the genetic evolution of PDAC and suggest that somatic insertions are acquired discontinuously in gastrointestinal neoplasms.


Assuntos
Carcinoma Ductal Pancreático/genética , Evolução Clonal , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Neoplasias Pancreáticas/genética , Fator Apoptótico 1 Ativador de Proteases/análise , Humanos
6.
Cell ; 155(5): 1034-48, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267889

RESUMO

LINE-1s are active human DNA parasites that are agents of genome dynamics in evolution and disease. These streamlined elements require host factors to complete their life cycles, whereas hosts have developed mechanisms to combat retrotransposition's mutagenic effects. As such, endogenous L1 expression levels are extremely low, creating a roadblock for detailed interactomic analyses. Here, we describe a system to express and purify highly active L1 RNP complexes from human suspension cell culture and characterize the copurified proteome, identifying 37 high-confidence candidate interactors. These data sets include known interactors PABPC1 and MOV10 and, with in-cell imaging studies, suggest existence of at least three types of compositionally and functionally distinct L1 RNPs. Among the findings, UPF1, a key nonsense-mediated decay factor, and PCNA, the polymerase-delta-associated sliding DNA clamp, were identified and validated. PCNA interacts with ORF2p via a PIP box motif; mechanistic studies suggest that this occurs during or immediately after target-primed reverse transcription.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Proteoma/análise , Ribonucleoproteínas/análise , Sequência de Aminoácidos , Animais , Regulação para Baixo , Genoma Humano , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Fases de Leitura Aberta , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/isolamento & purificação , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Helicases , Ribonucleoproteínas/isolamento & purificação , Alinhamento de Sequência , Transativadores/química , Transativadores/isolamento & purificação , Transativadores/metabolismo
7.
J Biol Chem ; 288(45): 32211-32228, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24045953

RESUMO

Ghrelin O-acyltransferase (GOAT) is a polytopic integral membrane protein required for activation of ghrelin, a secreted metabolism-regulating peptide hormone. Although GOAT is a potential therapeutic target for the treatment of obesity and diabetes and plays a key role in other physiologic processes, little is known about its structure or mechanism. GOAT is a member of the membrane-bound O-acyltransferase (MBOAT) family, a group of polytopic integral membrane proteins involved in lipid-biosynthetic and lipid-signaling reactions from prokaryotes to humans. Here we use phylogeny and a variety of bioinformatic tools to predict the topology of GOAT. Using selective permeabilization indirect immunofluorescence microscopy in combination with glycosylation shift immunoblotting, we demonstrate that GOAT contains 11 transmembrane helices and one reentrant loop. Development of the V5Glyc tag, a novel, small, and sensitive dual topology reporter, facilitated these experiments. The MBOAT family invariant residue His-338 is in the ER lumen, consistent with other family members, but conserved Asn-307 is cytosolic, making it unlikely that both are involved in catalysis. Photocross-linking of synthetic ghrelin analogs and inhibitors demonstrates binding to the C-terminal region of GOAT, consistent with a role of His-338 in the active site. This knowledge of GOAT architecture is important for a deeper understanding of the mechanism of GOAT and other MBOATs and could ultimately advance the discovery of selective inhibitors for these enzymes.


Assuntos
Aciltransferases/química , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Catálise , Galinhas , Biologia Computacional , Cães , Grelina/análogos & derivados , Grelina/química , Grelina/genética , Grelina/metabolismo , Células HeLa , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
8.
Annu Rev Genet ; 46: 651-75, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145912

RESUMO

Transposons are DNA sequences capable of moving in genomes. Early evidence showed their accumulation in many species and suggested their continued activity in at least isolated organisms. In the past decade, with the development of various genomic technologies, it has become abundantly clear that ongoing activity is the rule rather than the exception. Active transposons of various classes are observed throughout plants and animals, including humans. They continue to create new insertions, have an enormous variety of structural and functional impact on genes and genomes, and play important roles in genome evolution. Transposon activities have been identified and measured by employing various strategies. Here, we summarize evidence of current transposon activity in various plant and animal genomes.


Assuntos
Elementos de DNA Transponíveis , Genoma de Planta , Mutagênese Insercional/genética , Transformação Genética , Animais , Arabidopsis/genética , Evolução Molecular , Frequência do Gene , Variação Genética , Genoma Humano , Humanos , Elementos Nucleotídeos Longos e Dispersos , Fenótipo , Seleção Genética , Elementos Nucleotídeos Curtos e Dispersos
9.
Genetics ; 190(2): 523-35, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22135353

RESUMO

Extensive mutagenesis via massive recoding of retrotransposon Ty1 produced a synthetic codon-optimized retrotransposon (CO-Ty1). CO-Ty1 is defective for retrotransposition, suggesting a sequence capable of down-regulating retrotransposition. We mapped this sequence to a critical ~20-bp region within CO-Ty1 reverse transcriptase (RT) and confirmed that it reduced Ty1 transposition, protein, and RNA levels. Repression was not Ty1 specific; when introduced immediately downstream of the green fluorescent protein (GFP) stop codon, GFP expression was similarly reduced. Rap1p mediated this down-regulation, as shown by mutagenesis and chromatin immunoprecipitation. A regular threefold drop is observed in different contexts, suggesting utility for synthetic circuits. A large reduction of RNAP II occupancy on the CO-Ty1 construct was observed 3' to the identified Rap1p site and a novel 3' truncated RNA species was observed. We propose a novel mechanism of transcriptional regulation by Rap1p whereby it serves as a transcriptional roadblock when bound to transcription unit sequences.


Assuntos
Códon , Retroelementos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Sítios de Ligação , Regulação Fúngica da Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Motivos de Nucleotídeos , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Complexo Shelterina , Proteínas de Ligação a Telômeros/química , Fatores de Transcrição/química , Transcrição Gênica
10.
Cell ; 141(7): 1171-82, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20602999

RESUMO

Characterizing structural variants in the human genome is of great importance, but a genome wide analysis to detect interspersed repeats has not been done. Thus, the degree to which mobile DNAs contribute to genetic diversity, heritable disease, and oncogenesis remains speculative. We perform transposon insertion profiling by microarray (TIP-chip) to map human L1(Ta) retrotransposons (LINE-1 s) genome-wide. This identified numerous novel human L1(Ta) insertional polymorphisms with highly variant allelic frequencies. We also explored TIP-chip's usefulness to identify candidate alleles associated with different phenotypes in clinical cohorts. Our data suggest that the occurrence of new insertions is twice as high as previously estimated, and that these repeats are under-recognized as sources of human genomic and phenotypic diversity. We have just begun to probe the universe of human L1(Ta) polymorphisms, and as TIP-chip is applied to other insertions such as Alu SINEs, it will expand the catalog of genomic variants even further.


Assuntos
Elementos de DNA Transponíveis , Genoma Humano , Estudo de Associação Genômica Ampla , Análise de Sequência com Séries de Oligonucleotídeos , Cromossomos Humanos X , Enzimas de Restrição do DNA/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Masculino
11.
PLoS One ; 3(7): e2722, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18628958

RESUMO

BACKGROUND: The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP) coupled with pair-end ditag sequencing analysis (ChIP-PET) revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2) on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA) and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis.


Assuntos
Regulação da Expressão Gênica , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Imunoprecipitação da Cromatina , Dimerização , Fibroblastos/metabolismo , Humanos , IMP Desidrogenase/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...