Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Stroke Res ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37783839

RESUMO

Blood-brain barrier (BBB) disruption is a prominent pathophysiological mechanism in stroke. Transplantation of mesenchymal stem cells (MSCs) preserves BBB integrity following ischemic stroke. Fibroblast growth factor 21 (FGF21) has been shown to be a potent neuroprotective agent that reduces neuroinflammation and protects against BBB leakage. In this study, we assessed the effects of transplantation of MSCs overexpressing FGF21 (MSCs-FGF21) on ischemia-induced neurological deficits and BBB breakdown. MSCs-FGF21 was injected into the rat brain via the intracerebroventricular route 24 h after middle cerebral artery occlusion (MCAO) surgery. The behavioral performance was assessed using modified neurological severity scores and Y-maze tests. BBB disruption was measured using Evans blue staining, IgG extravasation, and brain water content. The levels of tight junction proteins, aquaporin 4, and neuroinflammatory markers were analyzed by western blotting and immunohistochemistry. The activity of matrix metalloproteinase-9 (MMP-9) was determined using gelatin zymography. At day-5 after MCAO surgery, intraventricular injection of MSCs-FGF21 was found to significantly mitigate the neurological deficits and BBB disruption. The MCAO-induced loss of tight junction proteins, including ZO-1, occludin, and claudin-5, and upregulation of the edema inducer, aquaporin 4, were also remarkably inhibited. In addition, brain infarct volume, pro-inflammatory protein expression, and MMP-9 activation were effectively suppressed. These MCAO-induced changes were only marginally improved by treatment with MSCs-mCherry, which did not overexpress FGF21. Overexpression of FGF21 dramatically improved the therapeutic efficacy of MSCs in treating ischemic stroke. Given its multiple benefits and long therapeutic window, MSC-FGF21 therapy may be a promising treatment strategy for ischemic stroke.

2.
Brain Res ; 1720: 146301, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226324

RESUMO

Although a good deal is known about the genetics and pathophysiology of Parkinson's disease (PD), and information is emerging about its cause, there are no pharmacological treatments shown to have a significant, sustained capacity to prevent or attenuate the ongoing neurodegenerative processes. However, there is accumulating clinical results to suggest that physical exercise is such a treatment, and studies of animal models of the dopamine (DA) deficiency associated with the motor symptoms of PD further support this hypothesis. Exercise is a non-pharmacological, economically practical, and sustainable intervention with little or no risk and with significant additional health benefits. In this study, we investigated the long-term effects of voluntary exercise on motor behavior and brain biochemistry in the transgenic MitoPark mouse PD model with progressive degeneration of the DA systems caused by DAT-driven deletion of the mitochondrial transcription factor TFAM in DA neurons. We found that voluntary exercise markedly improved behavioral function, including overall motor activity, narrow beam walking, and rotarod performance. There was also improvement of biochemical markers of nigrostriatal DA input. This was manifested by increased levels of DA measured by HPLC, and of the DA membrane transporter measured by PET. Moreover, exercise increased oxygen consumption and, by inference, ATP production via oxidative phosphorylation. Thus, exercise augmented aerobic mitochondrial oxidative metabolism vs glycolysis in the nigrostriatal system. We conclude that there are clear-cut physiological mechanisms for beneficial effects of exercise in PD.


Assuntos
Doença de Parkinson/metabolismo , Esforço Físico/fisiologia , Animais , Biomarcadores/metabolismo , Corpo Estriado/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Atividade Motora/fisiologia , Doença de Parkinson/terapia , Substância Negra/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
3.
J Neurotrauma ; 36(7): 1054-1059, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30226403

RESUMO

Mild traumatic brain injury (mTBI) constitutes 75 ∼ 90% of all TBI cases and causes various physical, cognitive, emotional, and other psychological symptoms. Nogo receptor 1 (NgR1) is a regulator of structural brain plasticity during development and in adulthood. Here, we used mice that, in the absence of doxycycline, overexpress NgR1 in forebrain neurons (MemoFlex) to determine the role of NgR1 in recovery from mTBI with respect to balance, cognition, memory, and emotion. We compared wild-type (WT), MemoFlex, and MemoFlex + doxycycline mice to the same three groups subjected to mTBI. mTBI was induced by a controlled 30-g weight drop. We found that inability to downregulate NgR1 significantly impairs recovery from mTBI-induced impairments. When the NgR1 transgene was turned off, recovery was similar to that of WT mice. The results suggest that the ability to regulate NgR1 signaling is needed for optimal recovery of motor coordination and balance, spatial memory, cognition, and emotional functions after mTBI.


Assuntos
Concussão Encefálica/metabolismo , Cognição/fisiologia , Emoções/fisiologia , Receptor Nogo 1/metabolismo , Equilíbrio Postural/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Concussão Encefálica/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Receptor Nogo 1/genética , Prosencéfalo/metabolismo , Memória Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...