Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SAGE Open Med ; 5: 2050312117700057, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491305

RESUMO

INTRODUCTION: Despite the widespread use of the mouse transverse aortic constriction heart failure model, there are no reports on the characterization of the standard-of-care agent carvedilol in this model. METHODS: Left ventricular pressure overload was produced in mice by transverse aortic constriction between the innominate and left common carotid arteries. Carvedilol was administered at multiple dose levels (3, 10 and 30 mg/kg/day per os; yielding end-study mean plasma concentrations of 0.002, 0.015 and 0.044 µM, respectively) in a therapeutic design protocol with treatment initiated after the manifestation of left ventricular remodeling at 3 weeks post transverse aortic constriction and continued for 10 weeks. RESULTS: Carvedilol treatment in transverse aortic constriction mice significantly decreased heart rate and left ventricular dP/dt (max) at all dose levels consistent with ß-adrenoceptor blockade. The middle dose of carvedilol significantly decreased left ventricular weight, whereas the higher dose decreased total heart, left and right ventricular weight and wet lung weight compared to untreated transverse aortic constriction mice. The higher dose of carvedilol significantly increased cardiac performance as measured by ejection fraction and fractional shortening and decreased left ventricular end systolic volume consistent with the beneficial effect on cardiac function. End-study plasma sST-2 and Gal-3 levels did not differ among sham, transverse aortic constriction control and transverse aortic constriction carvedilol groups. Plasma brain natriuretic peptide concentrations were elevated significantly in transverse aortic constriction control animals (~150%) compared to shams in association with changes in ejection fraction and heart weight and tended to decrease (~30%, p = 0.10-0.12) with the mid- and high-dose carvedilol treatment. CONCLUSION: A comparison of carvedilol hemodynamic and structural effects in the mouse transverse aortic constriction model versus clinical use indicates a strong agreement in effect profiles preclinical versus clinical, providing important translational validation for this widely used animal model. The present plasma brain natriuretic peptide biomarker findings support the measurement of plasma natriuretic peptides in the mouse transverse aortic constriction model to extend the translational utility of the model.

2.
Cardiovasc Diabetol ; 14: 29, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25888997

RESUMO

BACKGROUND: Glucagon-like peptide 1 (GLP-1) analogs and dipeptidyl peptidase-4 (DPP4) inhibitors are a newer class of antidiabetics named as incretin-based therapy. In addition to the homeostatic control of glucose, the incretin-based therapy has shown beneficial effects on the cardiovascular system in preclinical and clinical studies. However, there is limited information on their renal effects. To this end, we assessed the acute hemodynamic and renal effects of a GLP-1 analog, Liraglutide, and a DPP4 inhibitor, MK-0626. METHODS: Experiments were performed in anesthetized male Sprague-Dawley rats. Three ascending doses of Liraglutide (3, 9, and 27 nmol/kg/h) or MK-0626 (1 mg/kg) with or without GLP-1 peptide (2.4, 4.8, or 9.6 pmol/kg/min) were administered. Blood pressure (BP) and heart rate (HR) were recorded from an indwelling catheter. Glomerular filtration rate (GFR) and renal blood flow (RBF) were assessed by inulin and para-aminohippurate clearance, respectively. Renal excretory function was assessed in metabolic studies. RESULTS: Both Liraglutide and MK-0626 plus GLP-1 evoked significant diuretic and natriuretic responses and increased GFR. MK-0626 alone increased RBF. Liraglutide at 27 nmol//kg/h and MK-0626 plus GLP-1 at 9.6 pmol/kg/min also increased HR, whereas BP was not affected. CONCLUSION: The results of the present study demonstrated that a GLP-1 analog and a DPP4 inhibitor may have beneficial effects on renal sodium and water handling. Additionally, the DPP4 inhibitor, MK-0626, favorably affects renal hemodynamics by increasing RBF. However, exceedingly high levels of GLP-1 receptor agonists may adversely affect the cardiovascular system in acute setting, as demonstrated by an acute increase in HR.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Taxa de Filtração Glomerular/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Incretinas/farmacologia , Liraglutida/farmacologia , Circulação Renal/efeitos dos fármacos , Triazóis/farmacologia , Animais , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Hemodinâmica/efeitos dos fármacos , Rim/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...