Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 25(51): 11933-11939, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31310395

RESUMO

Electrochemical reduction of N2 to NH3 is a promising method for artificial N2 fixation, but it requires efficient and robust electrocatalysts to boost the N2 reduction reaction (NRR). Herein, a combination of experimental measurements and theoretical calculations revealed that a hybrid material in which ZnO quantum dots (QDs) are supported on reduced graphene oxide (ZnO/RGO) is a highly active and stable catalyst for NRR under ambient conditions. Experimentally, ZnO/RGO was confirmed to favor N2 adsorption due to the largely exposed active sites of ultrafine ZnO QDs. DFT calculations disclosed that the electronic coupling of ZnO with RGO resulted in a considerably reduced activation-energy barrier for stabilization of *N2 H, which is the rate-limiting step of the NRR. Consequently, ZnO/RGO delivered an NH3 yield of 17.7 µg h-1 mg-1 and a Faradaic efficiency of 6.4 % in 0.1 m Na2 SO4 at -0.65 V (vs. RHE), which compare favorably to those of most of the reported NRR catalysts and thus demonstrate the feasibility of ZnO/RGO for electrocatalytic N2 fixation.

2.
Colloids Surf B Biointerfaces ; 106: 51-9, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23434691

RESUMO

The novel granular semi-IPN hydrogels were in situ prepared in an aqueous solution by the free-radical grafting and crosslinking reactions among chitosan (CTS), acrylic acid (AA), gelatin (GE) and N,N'-methylene-bis-acrylamide. The FTIR spectra and elemental analysis confirmed that the AA monomers were grafted onto CTS backbone, and the GE macromolecular chains interpenetrated through the CTS-g-PAA network. The hydrogels are granular, which are composed of numerous micro-spheres according to the scanning electron microscope observations. The gel strength, adsorption, reuse and recovery properties of the hydrogels for Cu(2+) ion were systematically investigated. The results indicate the hydrogel with 2 wt% GE has the highest adsorption capacity of 261.08 mg/g with the recovery ratio of 95.2%. And the incorporation of 10 wt% GE enhanced the storage modulus by 103.4% (ω=100 rad/s) and 115.1% (ω=0.1 rad/s), and the adsorption rate by 5.67%. Moreover, the adsorption capacity of the hydrogel is still as high as 153.9 mg/g, after five cycles of adsorption-desorption. It was found that the ion-exchange and complexation interactions between the functional groups (-COO(-) and -NH2) of the hydrogels and Cu(2+) ion are the predominant adsorption mechanisms.


Assuntos
Quitosana/química , Cobre/química , Gelatina/química , Hidrogéis , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...