Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Int J Biol Macromol ; 274(Pt 1): 133309, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909727

RESUMO

Against the backdrop of the post-COVID-19 era, the demand for masks has become increasingly steady, discarded masks have brought about new environmental problems due to the lack of effective means of disposal as well as recycling mechanisms. To solve this problem, we make secondary use of discarded polylactic acid (PLA) masks. The nanofiber multilayer membranes PLA/PDA/GO/PPy were synthesized by layer-by-layer self-assembly for flexible supercapacitors (SCs). The multiple coating on PLA significantly increases the capacitive performance. Optimization of the PLA/PDA/GO/PPy demonstrates capacitance up to 1331 mF cm-2. Symmetric aqueous SCs using PLA/PDA/GO/PPy electrodes show higher energy density than other literature-reported SCs based on nanofiber multilayer membranes. In addition, we also explored the effects of discarded PLA/PDA/GO/PPy on the growth of ryegrass and canola in the soil. The exceptional combination of remarkable electrochemical properties and excellent environmental friendliness makes the PLA membrane promising for supercapacitors.

2.
Small ; : e2401970, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770987

RESUMO

Transition metal compounds (TMCs) have long been potential candidate catalysts in persulfate-based advanced oxidation process (PS-AOPs) due to their Fenton-like catalyze ability for radical generation. However, the mechanism involved in TMCs-catalyzed nonradical PS-AOPs remains obscure. Herein, the growth of FeO on the Fe3O4/carbon precursor is regulated by restricted pyrolysis of MIL-88A template to activate peroxymonosulfate (PMS) for tetracycline (TC) removal. The higher FeO incorporation conferred a 2.6 times higher degradation performance than that catalyzed by Fe3O4 and also a higher interference resistance to anions or natural organic matter. Unexpectedly, the quenching experiment, probe method, and electron paramagnetic resonance quantitatively revealed that the FeO reassigned high nonradical species (1O2 and FeIV═O) generation to replace original radical system created by Fe3O4. Density functional theory calculation interpreted that PMS molecular on strongly-adsorbed (200) and (220) facets of FeO enjoyed unique polarized electronic reception for surface confinement effect, thus the retained peroxide bond energetically supported the production of 1O2 and FeIV═O. This work promotes the mechanism understanding of TMCs-induced surface-catalyzed persulfate activation and enables them better perform catalytic properties in wastewater treatment.

3.
J Colloid Interface Sci ; 668: 12-24, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669989

RESUMO

The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 108 CFU mL-1) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL-1) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO4•- and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe0, and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water.


Assuntos
Carvão Vegetal , Ferro , Peróxidos , Piridinas , Piridinas/química , Piridinas/farmacologia , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Ferro/química , Ferro/metabolismo , Peróxidos/química , Peróxidos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nitrogênio/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Propriedades de Superfície
4.
Environ Geochem Health ; 46(5): 153, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587707

RESUMO

The environmental fate and risks of ciprofloxacin (CIP) in the subsurface have raised intensive concerns. Herein, the transport behaviors of CIP in both saturated quartz sand and sand/multi-walled carbon nanotubes (MWCNTs) mixtures under different solution ionic strength of the solution and coexisting cation types were investigated. Batch adsorption experiments highlighted growing adsorptive capacity for CIP with the increasing content of MWCNTs in the MWCNTs-quartz sand mixtures (from 0.5% to 1.5%, w/w). Breakthrough curves (BTCs) of CIP in the MWCNTs-quartz sand mixtures were well fitted by the two-site chemical nonequilibrium model (R2 > 0.833). The estimated retardation factors for CIP increased from 9.68 to 282 with growing content of MWCNTs in the sand column, suggesting the presence of MWCNTs significantly inhibited the transport of CIP in saturated porous media. Moreover, the values of retardation factors are negatively correlated with the ionic strength and higher ionic strength could facilitate the transport of CIP in the saturated porous media. Compared with monovalent cations (Na+), the presence of divalent cations (Ca2+) significantly facilitated the transport of CIP in the columns due to the complexation between CIP and Ca2+ as well as deposition of MWCNTs aggregates on the sand surface. Results regarding CIP retention in columns indicated that MWCNTs could enhance the accumulation of CIP in the layers close to the influent of sand columns, while they could hinder upward transport of CIP to the effluent. This study improves our understanding for transport behaviors and environmental risk assessments of CIP in the saturated porous media with MWCNTs.


Assuntos
Nanotubos de Carbono , Porosidade , Quartzo , Areia , Cátions , Ciprofloxacina , Concentração Osmolar
5.
J Hazard Mater ; 471: 134351, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653136

RESUMO

Macrophyte rhizospheric dissolved organic matter (ROM) served as widespread abiotic components in aquatic ecosystems, and its effects on antibiotic residues and antibiotic resistance genes (ARGs) could not be ignored. However, specific influencing mechanisms for ROM on the fate of antibiotic residues and expression of ARGs still remained unclear. Herein, laboratory hydroponic experiments for water lettuce (Pistia stratiotes) were carried out to explore mutual interactions among ROM, sulfamethoxazole (SMX), bacterial community, and ARGs expression. Results showed ROM directly affect SMX concentrations through the binding process, while CO and N-H groups were main binding sites for ROM. Dynamic changes of ROM molecular composition diversified the DOM pool due to microbe-mediated oxidoreduction, with enrichment of heteroatoms (N, S, P) and decreased aromaticity. Microbial community analysis showed SMX pressure significantly stimulated the succession of bacterial structure in both bulk water and rhizospheric biofilms. Furthermore, network analysis further confirmed ROM bio-labile compositions as energy sources and electron shuttles directly influenced microbial structure, thereby facilitating proliferation of antibiotic resistant bacteria (Methylotenera, Sphingobium, Az spirillum) and ARGs (sul1, sul2, intl1). This investigation will provide scientific supports for the control of antibiotic residues and corresponding ARGs in aquatic ecosystems.


Assuntos
Antibacterianos , Sulfametoxazol , Antibacterianos/farmacologia , Antibacterianos/química , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Bactérias/metabolismo , Genes Bacterianos , Rizosfera , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Microbiota , Biofilmes
6.
Water Res ; 256: 121621, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642536

RESUMO

Peracetic acid (PAA) has emerged as a new effective oxidant for various contaminants degradation through advanced oxidation process (AOP). In this study, sulfidated nano zero-valent iron-copper (S-nZVIC) with low Cu doping and sulfidation was synthesized for PAA activation, resulting in more efficient degradation of sulfamethoxazole (SMX, 20 µM) and other contaminants using a low dose of catalyst (0.05 g/L) and oxidant (100 µM). The characterization results suggested that S-nZVIC presented a more uniform size and distribution with fewer metal oxides, as the agglomeration and oxidation were inhibited. More significantly, doped Cu0 and sulfidation significantly enhanced the generation and contribution of •OH but decreased that of R-O• in S-nZVIC/PAA/SMX system compared with that of nZVIC and S-nZVI, accounting for the relatively high degradation efficiency of 97.7% in S-nZVIC/PAA/SMX system compared with 85.7% and 78.9% in nZVIC/PAA/SMX and S-nZVI/PAA/SMX system, respectively. The mechanisms underlying these changes were that (i) doped Cu° could promote the regeneration of Fe(Ⅱ) for strengthened PAA activation through mediating Fe(Ⅱ)/Fe(Ⅲ) cycle by Cu(Ⅰ)/Cu(Ⅱ) cycle; (ii) S species might consume part of R-O•, resulting in a decreased contribution of R-O• in SMX degradation; (iii) sulfidation increased the electrical conductivity, thus facilitating the electron transfer from S-nZVIC to PAA. Consequently, the dominant reactive oxygen species transited from R-O• to •OH to degrade SMX more efficiently. The degradation pathways, intermediate products and toxicity were further analyzed through density functional theory (DFT) calculations, liquid chromatography-mass spectrometry (LC-MS) and T.E.S.T software analysis, which proved the environmental friendliness of this process. In addition, S-nZVIC exhibited high stability, recyclability and degradation efficiency over a wide pH range (3.0∼9.0). This work provides a new insight into the rational design and modification of nano zero-valent metals for efficient wastewater treatment through adjusting the dominant reactive oxygen species (ROS) into the more active free radicals.


Assuntos
Cobre , Ferro , Ferro/química , Cobre/química , Ácido Peracético/química , Oxirredução , Poluentes Químicos da Água/química , Catálise
7.
Small ; : e2311862, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501876

RESUMO

In recent years, the research of FeSe2 and its composites in environmental remediation has been gradually carried out. And the FeSe2 materials show great catalytic performance in photocatalysis, electrocatalysis, and Fenton-like reactions for pollutants removal. Therefore, the studies and applications of FeSe2 materials are reviewed in this work, including the common synthesis methods, the role of Fe and Se species as well as the catalyst structure, and the potential for practical environmental applications. Hereinto, it is worth noting in particular that the lower-valent Se (Se2- ), unsaturated Se (Se- ), and Se vacancies (VSe ) can play different roles in promoting pollutants removal. In addition, the FeSe2 material also demonstrates high stability, reusability, and adaptability over a wider pH range as well as universality to different pollutants. In view of the overall great properties and performance of FeSe2 materials compared with other typical Fe-based materials, it deserves and needs further research. And finally, this paper presents some challenges and perspectives in future development, looking forward to providing helpful guidance for the subsequent research of FeSe2 and its composites for environmental application.

8.
Sci Total Environ ; 926: 171658, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38490411

RESUMO

Till now, microplastics/nano-plastics(M/NPs) have received a lot of attention as emerging contaminant. As a typical but complex porous medium, soil is not only a large reservoir of M/NPs but also a gateway for M/NPs to enter groundwater. Therefore, the review of the factors controlling the transport behavior of M/NPs in porous media can provide important guidance for the risk assessment of M/NPs in soil and groundwater. In this study, the key factors controlling the transport behavior of M/NPs in porous media are systematically divided into three groups: (1) nature of M/NPs affecting M/NPs transport in porous media, (2) nature of flow affecting M/NPs transport in porous media, (3) nature of porous media affecting M/NPs transport. In each group, the specific control factors for M/NPs transport in porous media are discussed in detail. In addition to the above factors, some substances (colloids or pollutants) present in natural porous media (such as soil or sediments) will co-transport with M/NPs and affect its mobility. According to the different properties of co-transported substances, the mechanism of promoting or inhibiting the migration behavior of M/NPs in porous media was discussed. Finally, the limitations and future research directions of M/NPs transport in porous media are pointed out. This review can provide a useful reference for predicting the transport of M/NPs in natural porous media.

9.
Nat Commun ; 14(1): 6740, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875482

RESUMO

The pre-designable structure and unique architectures of covalent organic frameworks (COFs) render them attractive as active and porous medium for water crisis. However, the effect of functional basis with different metrics on the regulation of interfacial behavior in advanced oxidation decontamination remains a significant challenge. In this study, we pre-design and fabricate different molecular interfaces by creating ordered π skeletons, incorporating different pore sizes, and engineering hydrophilic or hydrophobic channels. These synergically break through the adsorption energy barrier and promote inner-surface renewal, achieving a high removal rate for typical antibiotic contaminants (like levofloxacin) by BTT-DATP-COF, compared with BTT-DADP-COF and BTT-DAB-COF. The experimental and theoretical calculations reveal that such functional basis engineering enable the hole-driven levofloxacin oxidation at the interface of BTT fragments to occur, accompanying with electron-mediated oxygen reduction on terphenyl motif to active radicals, endowing it facilitate the balanced extraction of holes and electrons.

10.
Bioresour Technol ; 388: 129723, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716570

RESUMO

Composting has made it practicable to dispose electrolytic manganese residues (EMR) in a less toxic way, nevertheless, the decomposition and the loss of nitrogen is a critical issue. This study aimed to investigate the role of Phanerochaete chrysosporium (PC) inoculation on nitrogen migration and promotion of decomposing organic matter (OM), as well as the effect on bacterial community structure during EMR composting. The results exhibited that nitrogen loss tallied with the first-order kinetic model. PC inoculation increased the relative microbial abundance of Firmicutes, which improved the efficiency of nitrogen nitrification and OM degradation, and increased the germination index and total nitrogen content by 13.8% and 2.95 g/kg, respectively. Moreover, aromatic benzenes replaced heteropolysaccharides, alcohols and ethers as the main components of OM in fertilizer, leading up to a more stable humus structure. This study provides a rationale and a novel perspective on the resource and nutrient conservation of EMR-contaminated soils.

11.
Sci Total Environ ; 904: 166180, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37562617

RESUMO

Due to the widespread commercial production and use of brominated flame retardants (BFRs) in China, their potential impact on human health development should not be underestimated. This review searched the literature on Polybrominated diphenyl ethers and Novel brominated flame retardant (PBDEs and NBFRs) (broad BFRs) in the aquatic environment (including surface water and sediment) in China over the last decade. It was found that PBDEs and NBFRs entered the aquatic environment through four main pathways, atmospheric deposition, surface runoff, sewage effluent and microplastic decomposition. The distribution of PBDEs and NBFRs in the aquatic environment was highly correlated with the local economic structure and population density. In addition, a preliminary risk assessment of existing PBDEs and PBDEs in sediments showed that areas with high-risk quotient values were always located in coastal areas with e-waste dismantling sites, which was mainly attributed to the historical legacy of electronic waste. This research provides help for the human health development and regional risk planning management posed by PBDEs and NBFRs.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , China , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Plásticos , Medição de Risco , Poluentes Químicos da Água/análise
12.
Chemosphere ; 337: 139152, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37290504

RESUMO

Microplastics pollution in environments has become a major concern and it has been proven to have adverse impacts on plants, so there is an urgent to find approaches to alleviate the detrimental effects of microplastics. In our study, we investigated the influence of polystyrene microplastics (PSMPs) on the growth, photosynthesis, and oxidative defense system changes of ryegrass, as well as the behavior of MPs at roots. Then three types of nanomaterials were applied to alleviate the adverse impact of PSMPs on ryegrass, which were nano zero-valent iron (nZVI), carboxymethylcellulose-modified-nZVI (C-nZVI) and sulfidated nZVI (S-nZVI), respectively. Our results suggested that PSMPs had significant toxicity to ryegrass, leading to decrease of shoot weight, shoot length and root length. Three nanomaterials regained the weight of ryegrass to a varying extent and made more PSMPs aggregate near roots. In addition, C-nZVI and S-nZVI facilitated the entrance of PSMPs into the root and promoted the chlorophyll a and chlorophyll b contents in leaves. Analysis of antioxidant enzymes and malondialdehyde content indicated that ryegrass coped well with the internalization of PSMPs, and all three types of nZVI could alleviate PSMPs-stress in ryegrass. This study elaborates the toxicity of MPs on plants and provides a novel insight into the fixing of MPs by plants and nanomaterials in environments, which needs to be further explored in future research.


Assuntos
Ferro , Lolium , Ferro/farmacologia , Microplásticos/toxicidade , Poliestirenos/toxicidade , Plásticos/farmacologia , Clorofila A
13.
Sci Total Environ ; 889: 164035, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209753

RESUMO

Microplastics pollution has attracted worldwide attention in recent years due to their wide distribution and severe threat to biota. Additionally, microplastics will undergo serious aging effects after being discarded into the environment. Aging can change surface properties and affect the environmental behavior of microplastics. However, information on the aging process and influencing factors of microplastics are still limited. This review summarized recently reported characterization methods, and aging means of microplastics. Subsequently, the corresponding aging mechanisms (abrasion, chemical oxidation, light irradiation, and biodegradation) and the intervention mechanism of environmental factors are revealed, which is helpful to understand the environmental aging processes and ecological risks of microplastics. Besides, to further comprehend the potential environmental toxicity of microplastics, the article also outlined the release of additives during aging. This paper provides reference directions for further study on aging microplastics through a systematic review. Future research works should further facilitate the development of technologies to identify aged microplastics. And more attention needs to focus on narrowing the gap between laboratory aging simulation and the natural environment, thereby enhancing research authenticity and environmental relevance.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Biodegradação Ambiental
14.
Small ; 19(34): e2301817, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093465

RESUMO

Single-atom catalysts (SACs) for photocatalytic hydrogen peroxide (H2 O2 ) generation are researched but it is still challenging to obtain high H2 O2 yields. Herein, graphite carbon nitride (FeSA /CN) confined single Fe atoms with N/O coordination is prepared, and FeSA /CN shows high H2 O2 production via oxalic acid and O2 activation. Under visible light illumination, the concentration of H2 O2 generated by FeSA /CN can achieve 40.19 mM g-1 h-1 , which is 10.44 times higher than that of g-C3 N4 . The enhanced H2 O2 generation can be attributed to the formation of metal-organic complexes and rapid electron transfer. Moreover, the O2 activation of photocatalysts is revealed by 3,3',5,5'-tetramethylbenzidine oxidation. The results display that the O2 activation capacity of FeSA /CN is higher than that of g-C3 N4 , which facilitates the formation of H2 O2 . Finally, density functional theory calculation demonstrates that O2 is chemically adsorbed on Fe atomic sites. The adsorption energy of O2 is enhanced from -0.555 to -1.497 eV, and the bond length of OO is extended from 1.235 to 1.292 Å. These results exhibit that the confinement of single Fe atoms can promote O2 adsorption and activation. Finally, the photocatalytic mechanism is elaborated, which provides a deep understanding for SACs-catalyzed H2 O2 generation.

15.
Angew Chem Int Ed Engl ; 62(20): e202300256, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36880746

RESUMO

Catalyst-free visible light assisted Fenton-like catalysis offers opportunities to achieve the sustainable water decontamination, but the synergistic decontamination mechanisms are still unclear, especially the effect of proton transfer process (PTP). The conversion of peroxymonosulfate (PMS) in photosensitive dye-enriched system was detailed. The photo-electron transfer between excited dye and PMS triggered the efficient activation of PMS and enhanced the production of reactive species. Photochemistry behavior analysis and DFT calculations revealed that PTP was the crucial factor to determine the decontamination performance, leading to the transformation of dye molecules. The excitation process inducing activation of whole system was composed of low energy excitations, and the electrons and holes were almost contributed by LUMO and HOMO. This work provided new ideas for the design of catalyst-free sustainable system for efficient decontamination.

16.
Environ Sci Pollut Res Int ; 30(14): 39431-39450, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36763272

RESUMO

Over the last decades, advanced oxidation processes (AOPs) have been widely used in surface and ground water pollution control. The heterogeneous electro-Fenton (EF) process has gained much attention due to its properties of high catalytic performance, no generation of iron sludge, and good recyclability of catalyst. As of October 2022, the cited papers and publications of EF are around 1.3 × 10-5 and 3.4 × 10-3 in web of science. Among the AOP techniques, the contaminant removal efficiencies by EF process are above 90% in most studies. Current reviews mainly focused on the mechanism of EF and few reviews comprehensively summarized heterogeneous catalysts and their applications in wastewater treatment. Thus, this review focuses on the current studies covering the period 2012-2022, and applications of heterogeneous catalysts in EF process. Two kinds of typical heterogeneous EF systems (the addition of solid catalysts and the functionalized cathode catalysts) and their applications for organic contaminants degradation in water are reviewed. In detail, solid catalysts, including iron minerals, iron oxide-based composites, and iron-free catalysts, are systematically described. Different functionalized cathode materials, containing Fe-based cathodes, carbonaceous-based cathodes, and heteroatom-doped cathodes, are also reviewed. Finally, emphasis and outlook are made on the future prospects and challenges of heterogeneous EF catalyst for wastewater treatments.


Assuntos
Poluentes Químicos da Água , Água , Esgotos , Minerais , Catálise , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Oxirredução
17.
Sci Total Environ ; 871: 162048, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754314

RESUMO

Practical application of biochar may result in more biochar-derived dissolved organic matter (denoted as BDOM) inevitably release into surface waters by infiltration and surface runoff. The photochemical reaction of BDOM has gained intense attention, which played a key role in the fate of organic contaminants. However, the relationships between specific characteristics of BDOM and its photoreactivity are still uncertain. In this study, the characteristics of BDOM pyrolyzed from rice husk derived biochar at different temperature (from 400 °C to 700 °C) and their effect on the photodegradation of oxytetracycline (OTC) were carefully investigated. The 13C NMR and EEM results indicated the dominated component of BDOM was gradually turned from humic acid like substances with low aromaticity to high aromaticity with abundant oxygen-containing functional groups as pyrolytic temperature increases. Experimental results showed that the apparent rate constants (kobs) of BDOM700 (4.53 × 10-2 min-1) for OTC photodegradation was approximately one order of magnitude higher than BDOM400 (4.52 × 10-3 min-1), which was closely correlated with their aromaticity (R2 = 0.944). It was found that 3BDOM* rather than 1O2 played the major role in BDOM mediated photodegradation of OTC (80.13 % vs 14.34 %), and the carbonyl-containing group was identified as the main 3BDOM* precursor by NaBH4 reduction experiment. This work highlighted both aromaticity and carbonyl group contents were critical indicators for assessing the potential to generate 3BDOM* and corresponding photoreactivity.

18.
J Hazard Mater ; 447: 130763, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36641852

RESUMO

Microplastics (MPs) are able to interact with diverse contaminants in sediments. However, the impacts of MPs on sediment properties and bacterial community structure in heavy metal-contaminated sediments remain unclear. In this study, we investigated the adsorption of Pb(II) by sediment-MPs mixtures and the effects of different concentration MPs on sediment enzyme activities, DOM fractions, and Pb bioavailability in riverine sediments, and further explored the response of sediment microbial community to Pb in the presence of MPs. The results indicated that the addition of MPs significantly decreased the adsorption amount of Pb(II) by sediments, especially decreased by 12.6% at 10% MPs treatment. Besides, the changes in enzyme activities, DOM fractions exhibited dose-dependent effects of MPs. The higher level of MPs (5% and 10%) tends to transform Pb into more bioavailable fractions in sediments. Also, MPs amendment was observed to alter sediment bacterial community structures, and community differences were evident in the uncontaminated and lead-contaminated sediments. Therein, significant increase of Bacteroidota, Proteobacteria and decrease of Firmicutes abundance in Pb-contaminated sediment at the phylum level were observed. These findings are expected to provide comprehensive information for assessing the combined ecological risks of heavy metals and MPs in riverine sediments.


Assuntos
Metais Pesados , Microbiota , Poluentes Químicos da Água , Microplásticos , Plásticos , Chumbo/toxicidade , Metais Pesados/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 869: 161855, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708845

RESUMO

As an emerging environmental contaminant, the widespread of antibiotic resistance has caused a series of environmental issues and human health concerns. A load of antibiotic residues induced by agricultural practices have exerted selective pressure to bacterial communities in the soil-plant system, which facilitated the occurrence and dissemination of antibiotic resistance genes (ARGs) through horizontal gene transfer. As a result, the enrichment of ARGs within crops at harvest under the influence of food ingestion could lead to critical concerns of public health. In this review, the prevalence and dissemination of antibiotic resistance in the soil-plant system are highlighted. Moreover, different underlying mechanisms and detection methods for ARGs transfer between the soil environment and plant compartments are summarized and discussed. On the other hand, a wide range of influencing factors for the transfer and distribution of antibiotic resistance within the soil-plant system are also presented and discussed. In response to exposure of antibiotic residues and resistomes, corresponding hazard identification assessments have been summarized, which could provide beneficial guides of the toxicological tolerance for the general population. Finally, further research priorities for detection and management ARGs spread are also suggested.


Assuntos
Genes Bacterianos , Solo , Humanos , Solo/química , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo
20.
Bioresour Technol ; 370: 128497, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535618

RESUMO

Electrolytic manganese residue poses potentially threats to the environment and therefore needs eco-friendly treatment. Composting has been reported to effectively passivate heavy metals and alleviate their ecotoxicity. Observation of the Mn concentration during composting indicated that the mobility of Mn was significantly reduced, with the easily extraction fraction (acid extractable and easily reduction fraction) of Mn in the control pile (pile 1 without Phanerochaete chrysosporium inoculation) and treat pile (pile 2 with Phanerochaete chrysosporium inoculation) decreasing by 17% and 29%, respectively. The inoculation of Phanerochaete chrysosporium prompted the passivation of manganese, prolonged the thermophilic period, and enriched the microbial community structure, which was attributed to the rapid growth and reproduction of thermophilic bacteria. Moreover, Phanerochaete chrysosporium inoculation promoted the effect of pH on the stabilization of Mn, but the opposite contribution of organic matter. This study would provide a new perspective for remediating EMR contaminated soil via composting.


Assuntos
Compostagem , Microbiota , Phanerochaete , Manganês , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...