Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Food Chem ; 458: 140256, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959802

RESUMO

This study investigated the effect mechanism of selenium (Se)-enriched yeast on the rheological properties of dough from the perspective of yeast metabolism and gluten alteration. As the yeast Se content increased, the gas production rate of Se-enriched yeast slowed down, and dough viscoelasticity decreased. The maximum creep of Se-enriched dough increased by 29%, while the final creep increased by 54%, resulting in a softer dough. Non-targeted metabolomics analyses showed that Se inhibited yeast energy metabolism and promoted the synthesis of stress-resistance related components. Glutathione, glycerol, and linoleic acid contributed to the rheological property changes of the dough. The fractions and molecular weight distribution of protein demonstrated that the increase in yeast Se content resulted in the depolymerization of gluten. The intermolecular interactions, fluorescence spectrum and disulfide bond analysis showed that the disruption of intermolecular disulfide bond induced by Se-enriched yeast metabolites played an important role in the depolymerization of gluten.

2.
Food Funct ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973338

RESUMO

Obesity has become a significant global health concern, affecting millions of people worldwide. One well-studied approach to identifying potential anti-obesity agents is the inhibition of pancreatic lipase (PL), an enzyme responsible for dietary fat digestion. This study investigated the inhibitory effects and mechanisms of galactolipid monogalactosyldiacylglycerol (MGDG), that was extracted from Brassica rapa ssp. chinensis on PL. Five different MGDG compounds were isolated and the results showed that compounds containing shorter fatty acid side chains and a higher degree of unsaturated bonds exhibit a greater inhibition effect on PL. Interestingly, both the kinetic study and the molecular docking prediction revealed a non-competitive inhibition of MGDG. Furthermore, the in vitro digestion model also showed that the consumption of MGDG extract with salad dressing was effective in delaying enzymatic fat digestion in a dose-dependent manner. These results suggest that MGDG from Brassica rapa ssp. chinensis may be a promising candidate for developing novel anti-obesity therapies.

3.
Int J Biol Macromol ; 274(Pt 2): 133235, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901514

RESUMO

With its capability for automated production of high-resolution structures, 3D printing can develop plant-based seafood mimics with comparable protein content. However, the challenge lies in solidifying 3D printed products to achieve the firmness of seafood. Targeting prawn, texturisation of its 3D printed mimic by curdlan gum was compared against incubation with a protein cross-linking enzyme, microbial transglutaminase. Faba bean protein extract (FBP) was selected for its lightest colour. To confer structural stability to the FBP-based ink without hindering extrudability, adding 1 % xanthan gum was optimal. Printed curdlan-containing mimics were steamed for 9 min, while printed transglutaminase-containing mimics were incubated at 55 °C before steaming. Either adding 0.0625 % or 0.125 % w/w curdlan or, incubating the transglutaminase-containing mimics for an hour achieved chewiness of 818.8-940.6 g, comparable to that of steamed prawn (953.13 g). Curdlan hydrogel penetrated and reinforced the FBP network as observed under confocal imaging. Whereas incubation of transglutaminase-containing mimics enhanced microstructural connectivity, attributable to transglutaminase-catalysed isopeptide cross-linkages, and the consequent increase in disulfide bonding and ß-sheet. Ultimately, transglutaminase treatment appeared more suitable than curdlan, as it yielded mimics with cutting strength comparable to steamed prawn. Both demonstrated promising potential to broaden the variety of 3D printed seafood mimics.

4.
Food Chem ; 454: 139590, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823202

RESUMO

This study aimed to improve mung bean protein's gelation qualities via microbial transglutaminase (mTGase) cross-linking. The mTGase treatment significantly improved gel hardness and storage modulus (G') at higher enzyme levels (2 IU/g), peaking hardness at 3 h. The scanning electron microscopy imaging demonstrated more cross-linked structures at 2 IU/g, evolving into a dense network by 3 h. The water-holding capacity for mTGase-treated samples (2 IU/g, 3 h, 55 °C) tripled to 3.77 ± 0.06 g/g versus control (1.24 ± 0.02 g/g), alongside a 15 % decrease in zeta potential (-30.84 ± 0.901 mV versus control's -26.63 ± 0.497 mV) and an increase in emulsifying activity index to 4.519 ± 0.004 m2/g from 3.79 ± 0.01 m2/g (control). The confocal images showed a more uniform lipid droplet distribution in mTGase-treated samples, suggesting enhanced emulsifying activity. Thus, mTGase treatment significantly improved gel strength and emulsifying properties, making it ideal for plant-based seafood products.


Assuntos
Géis , Proteínas de Plantas , Transglutaminases , Vigna , Transglutaminases/química , Transglutaminases/metabolismo , Géis/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Vigna/química , Vigna/enzimologia , Emulsões/química
5.
Crit Rev Food Sci Nutr ; : 1-19, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922612

RESUMO

The nutritional benefits of combining probiotics with plant proteins have sparked increasing research interest and drawn significant attention. The interactions between plant proteins and probiotics demonstrate substantial potential for enhancing the functionality of plant proteins. Fermented plant protein foods offer a unique blend of bioactive components and beneficial microorganisms that can enhance gut health and combat chronic diseases. Utilizing various probiotic strains and plant protein sources opens doors to develop innovative probiotic products with enhanced functionalities. Nonetheless, the mechanisms and synergistic effects of these interactions remain not fully understood. This review aims to delve into the roles of promoting health through the intricate interplay of plant proteins and probiotics. The regulatory mechanisms have been elucidated to showcase the synergistic effects, accompanied by a discussion on the challenges and future research prospects. It is essential to recognize that the interactions between plant proteins and probiotics encompass multiple mechanisms, highlighting the need for further research to address challenges in achieving a comprehensive understanding of these mechanisms and their associated health benefits.

6.
J Agric Food Chem ; 72(26): 14701-14712, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38897610

RESUMO

Excessive hydrogen peroxide (H2O2) generated during retinal cell metabolic activity could lead to oxidative degeneration of retinal pigment epithelium (RPE) tissue, a specific pathological process implicated in various retinal diseases resulting in blindness, which can be mitigated by taking dietary antioxidants to prevent inflammation and impaired cellular dysfunction. This study tested the hypothesis that damages induced by oxidative stresses can be mitigated by lutein in a H2O2-challenged model, which was based on an ARPE-19 cell monolayer cultured on three-dimensional (3D)-printed fibrous scaffolds. Pretreating these models with lutein (0.5 µM) for 24 h can significantly lower the oxidative stress and maintain phagocytosis and barrier function. Moreover, lutein can modulate the NLRP3 inflammasome, leading to a ∼40% decrease in the pro-inflammatory cytokine (IL-1ß and IL-18) levels. Collectively, this study suggests that the 3D RPE model is an effective tool to examine the capability of lutein to modulate cellular functionalities and regulate NLRP3 inflammation.


Assuntos
Peróxido de Hidrogênio , Inflamassomos , Luteína , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Luteína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Interleucina-18/metabolismo , Modelos Biológicos
7.
Food Chem ; 454: 139782, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795626

RESUMO

The effect of heat treatment on the abundant bioactive compounds in moringa seed kernels (MSKs) during different degrees of roasting remains sparingly explored despite the flour of roasted MSKs has been incorporated into the human diet (e.g., cakes, cookies, and burgers) as a substitute to enrich the nutritional content. Therefore, we investigated the impacts of different roasting conditions (e.g., temperature and duration) on bioactive compounds (e.g., glucosinolates (GSLs), phenolic acids and alkaloids) and antioxidant capacity of MSKs. Our results showed that light and medium roasting increased the glucomoringin (GMG, the main GSL in MSKs) content from 43.7 (unroasted MSKs) to 69.7-127.3 µmol/g MSKs (dry weight), while excessive/dark roasting caused thermally-induced degradation of GMG (trace/undetectable level) in MSKs, resulting in the formation of various breakdown products (e.g., thiourea, nitrile, and amide). In addition, although roasting caused a significant reduction of some phenolic compounds (e.g., gallic, chlorogenic, p-coumaric acids, and trigonelline), other phenolic acids (e.g., caffeic and ferulic acids) and alkaloids (e.g., caffeine, theobromine, and theophylline) remarkably increased after roasting, which may contribute to the enhanced total phenolic content (up to 2.9-fold) and antioxidant capacity (up to 5.8-fold) of the roasted MSKs.


Assuntos
Culinária , Temperatura Alta , Moringa , Fenóis , Sementes , Sementes/química , Fenóis/química , Fenóis/análise , Moringa/química , Antioxidantes/química , Antioxidantes/análise , Extratos Vegetais/química , Glucosinolatos/química , Glucosinolatos/análise
8.
J Agric Food Chem ; 72(20): 11587-11596, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728660

RESUMO

Cellular agriculture holds hope for a sustainable alternative to conventional meat, yet multiple technical challenges remain. These include the large-scale production of edible scaffolds and culturing methods for fat tissues, which are key to meat texture, flavor, and nutritional values. Herein. we disclose our method in the facile fabrication of sponge-like plant protein scaffolds by applying commercial sugar cubes as highly permeable templates. The prepared secalin scaffolds feature a high porosity of 85-90%, fully interconnected pores, and high water stability. The mechanical properties of scaffolds could be tuned by varying sugar-to-protein weight ratio and post-water annealing treatment. Moreover, murine preadipocytes (3T3-L1) and porcine adipose-derived stem cells (ADSCs) readily infiltrate, adhere, proliferate, and differentiate on the secalin scaffolds to develop a fat tissue morphology. A cultured fat tissue was produced by culturing porcine ADSCs for 12 days, which remarkably resembles conventional porcine subcutaneous adipose tissue in appearance, texture, flavor, and fatty acid profiles. The research demonstrates the great potential of sponge-like secalin scaffolds for cultured fat tissue production.


Assuntos
Adipócitos , Tecido Adiposo , Secale , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Suínos , Camundongos , Porosidade , Tecido Adiposo/citologia , Adipócitos/citologia , Adipócitos/metabolismo , Secale/química , Engenharia Tecidual , Células-Tronco/citologia , Diferenciação Celular , Células 3T3-L1 , Proliferação de Células
9.
J Agric Food Chem ; 72(19): 11278-11291, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708781

RESUMO

Moringa seeds are an excellent dietary source of phytochemicals (i.e., glucosinolates, GSLs; isothiocyanates, ITCs) with health-beneficial effects. Although numerous studies have been conducted on moringa seeds, the effect of germination on the regulation of GSLs remains scarcely explored. The present study investigated the dynamic changes of GSLs in moringa seeds during germination (at 25, 30, and 35 °C for 6 days in the dark) through an untargeted metabolomics approach and compared the antioxidant capacity of ungerminated and germinated moringa seeds. Our results showed that germination significantly increased the total GSL content from 150 (day 0) to 323 µmol/g (35 °C, day 6) on a dry weight (DW) basis, especially glucomoringin (GMG), the unique glucosinolate in moringa seeds, which was significantly upregulated from 61 (day 0) to 149 µmol/g DW (35 °C, day 4). The upregulation of GMG corresponded to the metabolism of tyrosine, which might be the initial precursor for the formation of GMG. In addition, germination enhanced the total ITC content from 85 (day 0) to 239 µmol SE/g DW (35 °C, day 6), indicating that germination may have also increased the activity of myrosinase. Furthermore, germination remarkably increased the total phenolic content (109-507 mg GAE/100 g DW) and antioxidant capacity of moringa seeds. Our findings suggest that moringa sprouts could be promoted as a novel food and/or ingredient rich in GMG.


Assuntos
Germinação , Glucosinolatos , Moringa , Sementes , Tirosina , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Tirosina/metabolismo , Tirosina/análise , Moringa/química , Moringa/metabolismo , Moringa/crescimento & desenvolvimento , Glucosinolatos/metabolismo , Glucosinolatos/análise , Glucosinolatos/química , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/análise
10.
Foods ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672853

RESUMO

Sweetpotato (SP, Ipomoea batatas [L.] Lam.) is a globally significant food crop known for its high nutritional and functional values. Although the contents and compositions of bioactive constituents vary among SP varieties, sweetpotato by-products (SPBs), including aerial parts, storage root peels, and wastes generated from starch processing, are considered as excellent sources of polyphenols (e.g., chlorogenic acid, caffeoylquinic acid, and dicaffeoylquinic acid), lutein, functional carbohydrates (e.g., pectin, polysaccharides, and resin glycosides) or proteins (e.g., polyphenol oxidase, ß-amylase, and sporamins). This review summarises the health benefits of these ingredients specifically derived from SPBs in vitro and/or in vivo, such as anti-obesity, anti-cancer, antioxidant, cardioprotective, and anti-diabetic, evidencing their potential to regenerate value-added bio-products in the fields of food and nutraceutical. Accordingly, conventional and novel technologies have been developed and sometimes combined for the pretreatment and extraction processes aimed at optimising the recovery efficiency of bioactive ingredients from SPBs while ensuring sustainability. However, so far, advanced extraction technologies have not been extensively applied for recovering bioactive compounds from SPBs except for SP leaves. Furthermore, the incorporation of reclaimed bioactive ingredients from SPBs into foods or other healthcare products remains limited. This review also briefly discusses current challenges faced by the SPB recycling industry while suggesting that more efforts should be made to facilitate the transition from scientific advances to commercialisation for reutilising and valorising SPBs.

11.
Curr Res Food Sci ; 8: 100721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577420

RESUMO

Edible mushroom Antrodia cinnamomea is distinctive for its use in many health supplement products in relieving of diverse health-related conditions. A. cinnamomea is known for its rich array of bioactive secondary metabolites, predominantly terpenoids, that possess anti-inflammatory properties. Despite the abundance of these compounds, only some compounds have demonstrated notable anti-inflammatory activity. Moreover, there is a lack of established quality control methods specifically tailored to the active constituents of these products. Consequently, there is a great need for the development of precise and effective quality control methods for A. cinnamomea-based products, targeting their active components to ensure the consistency and reliability of these products in harnessing their anti-inflammatory potential. Herein we report a quantitative HPLC method for better evaluating the quality of A. cinnamomea based dietary supplements. Based on their bioactivities, we selected ten benchmark compounds, i. e. antcin K, (25S)-antcin H, (25R)-antcin H, (25R)-antcin C, (25S)-antcin C, (25R)-antcin A, 15α-acetyl-dehydrosulphurenic acid, versisponic acid D, dehydroeburicoic acid, and eburicoic acid and developed and validated a HPLC-UV method for quantification of these compounds simultaneously with high sensitivity, linearity and range, precision, and accuracy. Furthermore, we applied our method to quantify the commercially available A. cinnamomea containing supplements and found that the quality of these supplements varies greatly with only one product containing good amount of the active compounds. Our method provides a needed solution to quality control problem of the highly priced A. cinnamomea food and nutraceutical products that show great variety and inconsistency.

12.
Biol Trace Elem Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538964

RESUMO

In this study, we investigated the protective effect of selenium (Se)-enriched peptide isolated from Cardamine violifolia (SPE) against ethanol-induced liver injury. Cell proliferation assays show that different concentrations of SPE protect human embryonic liver L-02 cells against ethanol-induced injury in a dose-dependent manner. Treatment with 12 µmol/L Se increases the cell survival rate (82.44%) and reduces the release of alanine aminotransferase, aspartate transaminase, lactate dehydrogenase, and apoptosis rate. SPE treatment with 12 µmol/L Se effectively reduces the concentration of intracellular reactive oxygen species and increases the contents of intracellular superoxide dismutase (51.64 U/mg), catalase (4.41 U/mg), glutathione peroxidase (1205.28 nmol/g), and glutathione (66.67 µmol/g), thereby inhibiting the effect of ethanol-induced oxidative damage. The results of the transcriptomic analysis show that the glutathione metabolism and apoptotic pathway play significant roles in the protection of L-02 hepatocytes by SPE. Real-time qPCR analysis shows that SPE increases the mRNA expression of GPX1 and NGFR. The results of this study highlight the protective effects of SPE against ethanol-induced liver injury.

13.
Iran J Basic Med Sci ; 27(4): 492-499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419895

RESUMO

Objectives: Luteolin is a flavone that provides defense against myocardial ischemia/reperfusion (I/R) injury. However, this compound is subjected to methylation mediated by catechol-O-methyltransferase (COMT), thus influencing its pharmacological effect. To synthesize a new flavone from luteolin that avoids COMT-catalyzed methylation and find out the protective mechanism of LUA in myocardial I/R injury. Materials and Methods: Luteolin and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) were used to synthesize the new flavone known as LUAAPH-1 (LUA). Then, the myocardial ischemia/reperfusion injury cell model was established using H9c2 cells to detect the effect in myocardial ischemia/reperfusion regulation and to identify the underlying mechanism. Results: Pretreatment with LUA (20 µmol/l) substantially increased cell viability while reducing cell apoptosis rate and caspase-3 expression induced by I/R, and the protective effect of LUA on cell viability was stronger than diosmetin, which is the major methylated metabolite of luteolin. In addition, intracellular reactive oxygen species (ROS) production and calcium accumulation were both inhibited by LUA. Furthermore, we identified that LUA markedly relieved the promotive effects of I/R stimulation upon JNK and p38 phosphorylation. Conclusion: LUT pretreatment conveys significant cardioprotective effects after myocardial I/R injury, and JNK and p38 MAPK signaling pathway may be involved.

14.
Food Chem ; 444: 138675, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38335688

RESUMO

Inadequate Se intake can enhance vulnerability to certain health risks, with supplementation lessening these risks. This study investigated the bioavailability of Se and Se species in five Se compounds and in Se-rich Cardamine violifolia using in vitro digestion coupled with a Caco-2 cell monolayer model, which enabled the study of Se transport and uptake. Translocation results showed that SeCys2 and MeSeCys had high translocation rates in C. violifolia leaves (CVLs). The uptake rate of organic Se increased with time, and MeSeCys exhibited a higher uptake rate than that for SeCys2 and SeMet. The translocation mechanisms of SeMet, Se(IV), and Se(VI) were passive transport, whereas those of SeCys2 and MeSeCys were active transport. The bioavailability of organic Se was higher than that of inorganic Se, with a total Se bioavailability in CVLs of 49.11 %. This study would provide a theoretical basis for the application of C. violifolia in the functional food.


Assuntos
Cardamine , Compostos de Selênio , Selênio , Humanos , Células CACO-2 , Disponibilidade Biológica , Digestão
15.
Foods ; 13(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338624

RESUMO

In this study, a compound sugar (CS) with different glycemic index sugars was formulated via hydrolysis characteristics and postprandial glycemic response, and the impact of CS and creatine emulsion on exercise-related fatigue in mice was investigated. Thirty-five C57BL/6 mice were randomly divided into five groups to supply different emulsions for 4 weeks: initial emulsion (Con), glucose emulsion (62 mg/10 g MW glucose; Glu), CS emulsion (62 mg/10 g MW compound sugar; CS), creatine emulsion (6 mg/10 g MW creatine; Cr), and CS and creatine emulsion (62 mg/10 g MW compound sugar, 6 mg/10 g MW creatine, CS-Cr). Then, the exhaustion time of weight-bearing swimming and forelimb grip strength were measured to evaluate the exercise capacity of mice, and some fatigue-related biochemical indexes of blood were determined. The results demonstrated that the ingestion of CS significantly reduced the peak of postprandial blood glucose levels and prolonged the energy supply of mice compared to ingesting an equal amount of glucose. Mouse exhaustion time was 1.22-fold longer in the CS group than in the glucose group. Additionally, the supplementation of CS increased the liver glycogen content and total antioxidant capacity of mice. Moreover, the combined supplementation of CS and creatine increased relative forelimb grip strength and decreased blood creatine kinase activity. The findings suggested that the intake of CS could enhance exercise capacity, and the combined supplementation of CS and creatine has a synergistic effect in improving performance.

16.
J Agric Food Chem ; 72(6): 3036-3044, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299460

RESUMO

d-Allulose is a low-calorie functional rare sugar with excellent processing suitability and unique physiological efficacy. d-Allulose is primarily produced from d-fructose through enzymatic epimerization, facing the constraints of a low conversion yield and high production cost. In this study, a double-enzyme cascade system with tetraborate-assisted isomerization was constructed for the efficient production of d-allulose from inexpensive d-glucose. With the introduction of sodium tetraborate (STB), capable of forming complexes with diol-bearing sugars, the conversion yield of d-allulose from d-glucose substantially escalated from the initial 17.37% to 44.97%. Furthermore, d-allulose was found to exhibit the most pronounced binding affinity for STB with an association constant of 1980.51 M-1, notably surpassing that of d-fructose (183.31 M-1) and d-glucose (35.37 M-1). Additionally, the structural analysis of the sugar-STB complexes demonstrated that d-allulose reacted with STB via the cis 2,3-hydroxyl groups in the α-furanose form. Finally, the mechanism underlying STB-assisted isomerization was proposed, emphasizing the preferential formation of an allulose-STB complex that effectively shifts the isomerization equilibrium to the allulose side, thereby resulting in high yield of d-allulose. Such an STB-facilitated isomerization system would also provide a guidance for the cost-effective synthesis of other rare sugars.


Assuntos
Boratos , Glucose , Glucose/metabolismo , Isomerismo , Frutose/metabolismo
17.
J Agric Food Chem ; 71(49): 19523-19530, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38039415

RESUMO

Water and ethanol extracts of dried thyme (Thymus vulgaris) were analyzed for chemical composition, inhibition of the SARS-CoV-2 spike protein-ACE2 interaction, inhibition of ACE2 activity, and free radical scavenging capacity. Thirty-two compounds were identified in water extract (WE) and 27 were identified in ethanol extract (EE) of thyme through HPLC-MS. The WE (33.3 mg/mL) and EE (3.3 mg/mL) of thyme inhibited the spike protein-ACE2 interaction by 82.6 and 86.4%, respectively. The thyme WE at 5 mg/mL inhibited ACE2 activity by 99%, and the EE at 5 mg/mL inhibited ACE2 by 65.8%. Total phenolics were determined to be 38.9 and 8.8 mg of GAE/g in WE and EE, respectively. The HO• scavenging capacities were 1121.1 and 284.4 µmol of TE/g in WE and EE, respectively. The relative DPPH• scavenging capacities were 126.3 µmol TE/g in WE and 28.2 µmol TE/g in EE. The ABTS•+ scavenging capacities were 267.1 µmol TE/g in WE and 96.7 µmol TE/g in EE. The results suggested that the thyme extract could be potentially used to prevent SARS-CoV-2 infection and mitigate the complications from the infection.


Assuntos
COVID-19 , Thymus (Planta) , Humanos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Thymus (Planta)/química , Thymus (Planta)/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Etanol , Água
18.
Food Res Int ; 174(Pt 1): 113495, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986497

RESUMO

The aim of this study was to investigate a more practical method for obtaining non-extractable polyphenols (NEPPs) from blue honeysuckle fruit pomace. Three methods, namely acid, alkaline, and enzymatic hydrolysis, were utilized to extract NEPPs. The findings indicated that alkaline hydrolysis was the most effective method for releasing NEPPs, which demonstrated higher levels of total flavonoid content (TFC) and total phenolic content (TPC) from blue honeysuckle fruit pomace. Additionally, higher TPC and TFC levels were related to a stronger antioxidant capacity. Qualitative and quantitative analysis using HPLC-HR-TOF-MS/MS revealed that acid hydrolysis resulted in a greater concentration of certain phenolic acids, while alkaline hydrolysis yielded a higher concentration of flavonoids, and enzymatic hydrolysis produced a wider range of phenolic compositions. Despite the fact that enzymatic hydrolysis is considered a gentler method, the researchers concluded that alkaline hydrolysis was the most appropriate method for obtaining NEPPs from blue honeysuckle fruit pomace.


Assuntos
Lonicera , Polifenóis , Polifenóis/análise , Antioxidantes/análise , Frutas/química , Espectrometria de Massas em Tandem , Fenóis/análise , Flavonoides
19.
Food Res Int ; 173(Pt 2): 113299, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803690

RESUMO

Cultured meat is believed to be a promising alternative to conventional meat production that can reduce environmental impacts, animal suffering, and food safety risks. However, one of the major challenges in producing cultured meat is to provide suitable microcarriers that can support cell attachment, proliferation, and differentiation. In this study, we developed novel microcarriers based on chickpea protein hydrolysates functionalized with trypsin. These microcarriers exhibited superior cytoaffinity and proliferation for various types of cultured cells, including C2C12, porcine myoblasts, chicken satellite cells, and 3T3-L1. Moreover, these microcarriers enabled cell differentiation into muscle or fat cells under appropriate conditions. We propose that trypsin treatment enhances the cytoaffinity of chickpea protein hydrolysates by exposing lysine and arginine residues that can interact with cell surface receptors. Our results suggest that chickpea protein hydrolysate functionalized microcarrier is a promising substrate for cultured meat production with cost-effectiveness and scalability.


Assuntos
Cicer , Hidrolisados de Proteína , Animais , Suínos , Tripsina , Microesferas , Carne
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...