Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 32(19): 4201-4214.e12, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049480

RESUMO

Red coloration is a salient feature of the natural world. Many vertebrates produce red color by converting dietary yellow carotenoids into red ketocarotenoids via an unknown mechanism. Here, we show that two enzymes, cytochrome P450 2J19 (CYP2J19) and 3-hydroxybutyrate dehydrogenase 1-like (BDH1L), are sufficient to catalyze this conversion. In birds, both enzymes are expressed at the sites of ketocarotenoid biosynthesis (feather follicles and red cone photoreceptors), and genetic evidence implicates these enzymes in yellow/red color variation in feathers. In fish, the homologs of CYP2J19 and BDH1L are required for ketocarotenoid production, and we show that these enzymes are sufficient to produce ketocarotenoids in cell culture and when ectopically expressed in fish skin. Finally, we demonstrate that the red-cone-enriched tetratricopeptide repeat protein 39B (TTC39B) enhances ketocarotenoid production when co-expressed with CYP2J19 and BDH1L. The discovery of this mechanism of ketocarotenoid biosynthesis has major implications for understanding the evolution of color diversity in vertebrates.


Assuntos
Hidroxibutirato Desidrogenase , Pigmentação , Animais , Aves/genética , Carotenoides , Sistema Enzimático do Citocromo P-450/genética , Plumas , Pigmentação/genética
2.
Biochem Biophys Res Commun ; 623: 66-73, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878425

RESUMO

Digestive-organ expansion factor (Def) is a nucleolar protein that recruits cysteine proteinase Calpain3 (CAPN3) into the nucleolus to form the Def-CAPN3 complex in both human and zebrafish. This complex mediates the degradation of the tumor suppressor p53 and ribosome biogenesis factor mitotic phosphorylated protein 10 (Mpp10) in nucleolus, demonstrating the importance of this complex in regulating cell cycle and ribosome biogenesis. However, the Def and CAPN3 interacting motifs have yet been identified. In this report, by using a series of truncated or internally deleted human CAPN3 (hCAPN3) derivatives we identify that an essential motif of 86 amino acids (86-aa) (430-515aa) in hCAPN3 for its interaction with human Def (hDef), and this 86-aa motif is highly conserved in zebrafish Capn3b (zCapn3b) and is also required for the interaction between zebrafish Def (zDef) and zCapn3b. We further identify the 2/3 C-terminus of hDef is responsible for mediating the hDef-hCAPN3 interaction, and the corresponding region is conserved for the zDef and zCapn3b interaction. Our results lay the ground to resolve the structure of the Def-CAPN3 complex in the future.


Assuntos
Nucléolo Celular , Peixe-Zebra , Motivos de Aminoácidos , Aminoácidos/metabolismo , Animais , Calpaína/genética , Calpaína/metabolismo , Ciclo Celular , Nucléolo Celular/metabolismo , Humanos , Proteínas Musculares/metabolismo , Peixe-Zebra/metabolismo
3.
J Genet Genomics ; 48(11): 955-960, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34452850

RESUMO

The nucleolus, as the 'nucleus of the nucleus', is a prominent subcellular organelle in a eukaryocyte. The nucleolus serves as the centre for ribosome biogenesis, as well as an important site for cell-cycle regulation, cellular senescence, and stress response. The protein composition of the nucleolus changes dynamically through protein turnover to meet the needs of cellular activities or stress responses. Recent studies have identified a nucleolus-localized protein degradation pathway in zebrafish and humans, namely the Def-CAPN3 pathway, which is essential to ribosome production and cell-cycle progression, by controlling the turnover of multiple substrates (e.g., ribosomal small-subunit [SSU] processome component Mpp10, transcription factor p53, check-point proteins Chk1 and Wee1). This pathway relies on the Ca2+-dependent cysteine proteinase CAPN3 and is independent of the ubiquitin-mediated proteasome pathway. CAPN3 is recruited by nucleolar protein Def from cytoplasm to nucleolus, where it proteolyzes its substrates which harbor a CAPN3 recognition-motif. Def depletion leads to the exclusion of CAPN3 and accumulation of p53, Wee1, Chk1, and Mpp10 in the nucleolus that result in cell-cycle arrest and rRNA processing abnormality. Here, we summarize the discovery of the Def-CAPN3 pathway and propose its biological role in cell-cycle control and ribosome biogenesis.


Assuntos
Calpaína/metabolismo , Pontos de Checagem do Ciclo Celular , Nucléolo Celular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Ribossomos/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/genética , Quinase 1 do Ponto de Checagem/metabolismo , Humanos , Redes e Vias Metabólicas , Organogênese , Ligação Proteica , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteólise
4.
Elife ; 102021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34435950

RESUMO

Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step toward defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.


Assuntos
Melanóforos/fisiologia , Pigmentação/genética , Peixe-Zebra/crescimento & desenvolvimento , Animais , Diferenciação Celular , Fenótipo , Filogenia , Pigmentos Biológicos , Especificidade da Espécie , Peixe-Zebra/genética
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34031155

RESUMO

Determining how plasticity of developmental traits responds to environmental conditions is a challenge that must combine evolutionary sciences, ecology, and developmental biology. During metamorphosis, fish alter their morphology and color pattern according to environmental cues. We observed that juvenile clownfish (Amphiprion percula) modulate the developmental timing of their adult white bar formation during metamorphosis depending on the sea anemone species in which they are recruited. We observed an earlier formation of white bars when clownfish developed with Stichodactyla gigantea (Sg) than with Heteractis magnifica (Hm). As these bars, composed of iridophores, form during metamorphosis, we hypothesized that timing of their development may be thyroid hormone (TH) dependent. We treated clownfish larvae with TH and found that white bars developed earlier than in control fish. We further observed higher TH levels, associated with rapid white bar formation, in juveniles recruited in Sg than in Hm, explaining the faster white bar formation. Transcriptomic analysis of Sg recruits revealed higher expression of duox, a dual oxidase implicated in TH production as compared to Hm recruits. Finally, we showed that duox is an essential regulator of iridophore pattern timing in zebrafish. Taken together, our results suggest that TH controls the timing of adult color pattern formation and that shifts in duox expression and TH levels are associated with ecological differences resulting in divergent ontogenetic trajectories in color pattern development.


Assuntos
Adaptação Fisiológica , Peixes/crescimento & desenvolvimento , Pigmentação da Pele/fisiologia , Hormônios Tireóideos/metabolismo , Animais , Anêmonas-do-Mar
6.
Cell Regen ; 9(1): 8, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588143

RESUMO

Recovery of liver mass to a healthy liver donor by compensatory regeneration after partial hepatectomy (PH) is a prerequisite for liver transplantation. Synchronized cell cycle reentry of the existing hepatocytes after PH is seemingly a hallmark of liver compensatory regeneration. Although the molecular control of the PH-triggered cell cycle reentry has been extensively studied, little is known about how the synchronization is achieved after PH. The nucleolus-localized protein cleavage complex formed by the nucleolar protein Digestive-organ expansion factor (Def) and cysteine proteinase Calpain 3 (Capn3) has been implicated to control wounding healing during liver regeneration through selectively cleaving the tumor suppressor p53 in the nucleolus. However, whether the Def-Capn3 complex participates in regulating the synchronization of cell cycle reentry after PH is unknown. In this report, we generated a zebrafish capn3b null mutant (capn3b∆19∆14). The homozygous mutant was viable and fertile, but suffered from a delayed liver regeneration after PH. Delayed liver regeneration in capn3b∆19∆14 was due to disruption of synchronized cell proliferation after PH. Mass spectrometry (MS) analysis of nuclear proteins revealed that a number of negative regulators of cell cycle are accumulated in the capn3b∆19∆14 liver after PH. Moreover, we demonstrated that Check-point kinase 1 (Chk1) and Wee1, two key negative regulators of G2 to M transition, are substrates of Capn3. We also demonstrated that Chk1 and Wee1 were abnormally accumulated in the nucleoli of amputated capn3b∆19∆14 liver. In conclusion, our findings suggest that the nucleolar-localized Def-Capn3 complex acts as a novel regulatory pathway for the synchronization of cell cycle reentry, at least partially, through inactivating Chk1 and Wee1 during liver regeneration after PH.

7.
Nucleic Acids Res ; 47(6): 2996-3012, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30773582

RESUMO

Mpp10 forms a complex with Imp3 and Imp4 that serves as a core component of the ribosomal small subunit (SSU) processome. Mpp10 also interacts with the nucleolar protein Sas10/Utp3. However, it remains unknown how the Mpp10-Imp3-Imp4 complex is delivered to the nucleolus and what biological function the Mpp10-Sas10 complex plays. Here, we report that the zebrafish Mpp10 and Sas10 are conserved nucleolar proteins essential for the development of the digestive organs. Mpp10, but not Sas10/Utp3, is a target of the nucleolus-localized Def-Capn3 protein degradation pathway. Sas10 protects Mpp10 from Capn3-mediated cleavage by masking the Capn3-recognition site on Mpp10. Def interacts with Sas10 to form the Def-Sas10-Mpp10 complex to facilitate the Capn3-mediated cleavage of Mpp10. Importantly, we found that Sas10 determines the nucleolar localization of the Mpp10-Imp3-Imp4 complex. In conclusion, Sas10 is essential not only for delivering the Mpp10-Imp3-Imp4 complex to the nucleolus for assembling the SSU processome but also for fine-tuning Mpp10 turnover in the nucleolus during organogenesis.


Assuntos
Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Transativadores/genética , Proteínas de Peixe-Zebra/genética , Sequência de Aminoácidos/genética , Animais , Calpaína/genética , Nucléolo Celular/genética , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Ligação Proteica , Proteínas Ribossômicas/genética , Ribossomos/genética , Peixe-Zebra/genética
8.
PLoS Biol ; 14(9): e1002555, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27657329

RESUMO

Digestive organ expansion factor (Def) is a nucleolar protein that plays dual functions: it serves as a component of the ribosomal small subunit processome for the biogenesis of ribosomes and also mediates p53 degradation through the cysteine proteinase calpain-3 (CAPN3). However, nothing is known about the exact relationship between Def and CAPN3 or the regulation of the Def function. In this report, we show that CAPN3 degrades p53 and its mutant proteins p53A138V, p53M237I, p53R248W, and p53R273P but not the p53R175H mutant protein. Importantly, we show that Def directly interacts with CAPN3 in the nucleoli and determines the nucleolar localisation of CAPN3, which is a prerequisite for the degradation of p53 in the nucleolus. Furthermore, we find that Def is modified by phosphorylation at five serine residues: S50, S58, S62, S87, and S92. We further show that simultaneous phosphorylations at S87 and S92 facilitate the nucleolar localisation of Capn3 that is not only essential for the degradation of p53 but is also important for regulating cell cycle progression. Hence, we propose that the Def-CAPN3 pathway serves as a nucleolar checkpoint for cell proliferation by selective inactivation of cell cycle-related substrates during organogenesis.

9.
Sci Rep ; 5: 13370, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26311515

RESUMO

The molecular weight (MW) of a protein can be predicted based on its amino acids (AA) composition. However, in many cases a non-chemically modified protein shows an SDS PAGE-displayed MW larger than its predicted size. Some reports linked this fact to high content of acidic AA in the protein. However, the exact relationship between the acidic AA composition and the SDS PAGE-displayed MW is not established. Zebrafish nucleolar protein Def is composed of 753 AA and shows an SDS PAGE-displayed MW approximately 13 kDa larger than its predicted MW. The first 188 AA in Def is defined by a glutamate-rich region containing ~35.6% of acidic AA. In this report, we analyzed the relationship between the SDS PAGE-displayed MW of thirteen peptides derived from Def and the AA composition in each peptide. We found that the difference between the predicted and SDS PAGE-displayed MW showed a linear correlation with the percentage of acidic AA that fits the equation y = 276.5x - 31.33 (x represents the percentage of acidic AA, 11.4% ≤ x ≤ 51.1%; y represents the average ΔMW per AA). We demonstrated that this equation could be applied to predict the SDS PAGE-displayed MW for thirteen different natural acidic proteins.


Assuntos
Ácidos/química , Eletroforese em Gel de Poliacrilamida , Modelos Químicos , Peptídeos/química , Sequência de Aminoácidos , Animais , Glicosilação , Dados de Sequência Molecular , Peso Molecular , Sumoilação , Ubiquitinação , Peixe-Zebra , Proteínas de Peixe-Zebra/química
10.
Nucleic Acids Res ; 43(2): 1035-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25550427

RESUMO

p53 functions as a tumor suppressor by transcriptionally regulating the expression of genes involved in controlling cell proliferation or apoptosis. p53 and its isoform Δ133p53/Δ113p53 form a negative regulation loop in that p53 activates the expression of Δ133p53/Δ113p53 while Δ133p53/Δ113p53 specifically antagonizes p53 apoptotic activity. This pathway is especially important to safeguard the process of embryogenesis because sudden activation of p53 by DNA damage signals or developmental stress is detrimental to a developing embryo. Here we report the identification of five novel p53 isoforms. p53ß is generated due to alternative splicing of the intron 8 of p53 while the other four, namely, TA2p53, TA3p53, TA4p53 and TA5p53, result from the combination of alternative splicing of intron 1 (within intron 4 of the p53 gene) of the Δ113p53 gene and a naturally occurring CATT 4 bp deletion within the alternative splicing product in zebrafish. The CATT 4 bp deletion creates four translation start codons which are in-frame to the open reading frame of Δ113p53. We also show that TAp53 shares the same promoter with Δ113p53 and functions to antagonize p53 apoptotic activity. The identification of Δ113p53/TA2/3/4/5p53 reveals a pro-survival mechanism which operates robustly during embryogenesis in response to the DNA-damage condition.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Íntrons , Deleção de Sequência , Proteína Supressora de Tumor p53/genética , Proteínas de Peixe-Zebra/genética , Processamento Alternativo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
PLoS One ; 8(4): e58858, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593122

RESUMO

Digestive organs originate from the endoderm. Morphogenesis of the digestive system is precisely controlled by multiple factors that dictate the cell fate and behavior so that the specific digestive organs are timely formed in the right place and develop into right size and structure. We showed previously that digestive organ expansion factor (def) is a gene whose expression is enriched in the liver, pancreas and intestine. Loss-of-function of def in the def(hi429) mutant confers hypoplastic digestive organs partly due to alteration of expression of genes related to the p53 pathway. However, the molecular mechanism for the involvement of Def in the organogenesis of digestive organs is still largely unknown. For example, it is not known whether Def regulates specific pathways in a specific organ. To address this question, we generated four independent Tg(fabp10a:def) transgenic fish lines which over-expressed Def specifically in the liver. We characterized Tg-I, one of the transgenic lines, in detail with genetic, molecular and histological approaches. We found that Tg-I restored the liver but not exocrine pancreas and intestine development in the def(hi429) mutant. However, Tg-I adult fish in the wild type (WT) background exhibits reduced liver-to-body ratio and all four transgenic lines conferred abnormal intrahepatic structure. Microarray data analysis showed that certain specific functional pathways were affected in the liver of Tg-I. These results demonstrate that Def functions in a cell autonomous manner during early liver development and aberrant Def protein expression might lead to disruption of the structural integrity of a normal adult liver.


Assuntos
Sistema Digestório/citologia , Sistema Digestório/crescimento & desenvolvimento , Organogênese , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Envelhecimento/metabolismo , Animais , Animais Geneticamente Modificados , Nucléolo Celular/metabolismo , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Intestinos/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Especificidade de Órgãos , Pâncreas Exócrino/crescimento & desenvolvimento , Transporte Proteico , RNA Ribossômico 18S/metabolismo , Transgenes , Regulação para Cima/genética , Proteínas de Peixe-Zebra/genética
12.
Cell Res ; 23(5): 620-34, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23357851

RESUMO

p53 protein turnover through the ubiquitination pathway is a vital mechanism in the regulation of its transcriptional activity; however, little is known about p53 turnover through proteasome-independent pathway(s). The digestive organ expansion factor (Def) protein is essential for the development of digestive organs. In zebrafish, loss of function of def selectively upregulates the expression of p53 response genes, which raises a question as to what is the relationship between Def and p53. We report here that Def is a nucleolar protein and that loss of function of def leads to the upregulation of p53 protein, which surprisingly accumulates in the nucleoli. Our extensive studies have demonstrated that Def can mediate the degradation of p53 protein and that this process is independent of the proteasome pathway, but dependent on the activity of Calpain3, a cysteine protease. Our findings define a novel nucleolar pathway that regulates the turnover function of p53, which will advance our understanding of p53's role in organogenesis and tumorigenesis.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Apoptose , Calpaína/antagonistas & inibidores , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular , Nucléolo Celular/metabolismo , Embrião não Mamífero/fisiologia , Fase G1 , Células Hep G2 , Humanos , Células MCF-7 , Mutação , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Ubiquitinação , Regulação para Cima , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...