Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 7(1): 111, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31358058

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disease. Involuntary movements, cognitive impairment and psychiatric disturbance are the major clinical manifestations, and gradual atrophy and selective neuronal loss in the striatum and cerebral cortex are the pathologic hallmarks. HD is caused by expanded CAG trinucleotide repeats at the N-terminus of IT15 that encodes the huntingtin (HTT) protein, though the molecular mechanisms through which the mutant HTT (mHTT) exerts toxic effects remain obscure. Members of the caspase family, including caspase-2 (Casp2), play an important role in HD pathogenesis. Genetic ablation of Casp2 ameliorates cognitive and motor deficits of HD mice, though the molecular targets of Casp2 are still unclear. It is well established that the microtubule-associated protein tau potentiates cognitive dysfunction in a variety of neurodegenerative disorders, including HD. Our recent study indicates that Casp2-catalyzed tau cleavage at aspartate 314 (tau 2N4R isoform numbering system) mediates synaptotoxicity, cognitive deficits and neurodegeneration in cellular and mouse models of frontotemporal dementia; further, levels of Δtau314, the soluble, N-terminal cleavage product, are elevated in individuals with mild cognitive impairment and Alzheimer's disease, compared with cognitively normal individuals. Here, we identified the presence of Δtau314 proteins in the striatum (caudate nucleus) and prefrontal cortex (Brodmann's area 8/9) of human subjects, and showed that in both structures, levels of Casp2 and Δtau314 proteins correlate well, and both proteins are higher in HD patients than non-HD individuals. Our findings advance our understanding of the contribution of Casp2-mediated Δtau314 production to HD pathogenesis.


Assuntos
Caspase 2/metabolismo , Núcleo Caudado/metabolismo , Disfunção Cognitiva/metabolismo , Cisteína Endopeptidases/metabolismo , Doença de Huntington/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas tau/metabolismo , Disfunção Cognitiva/complicações , Feminino , Humanos , Doença de Huntington/complicações , Masculino , Pessoa de Meia-Idade
2.
J Alzheimers Dis ; 56(2): 743-761, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28059792

RESUMO

There exist several dozen lines of transgenic mice that express human amyloid-ß protein precursor (AßPP) with Alzheimer's disease (AD)-linked mutations. AßPP transgenic mouse lines differ in the types and amounts of Aß that they generate and in their spatiotemporal patterns of expression of Aß assemblies, providing a toolkit to study Aß amyloidosis and the influence of Aß aggregation on brain function. More complete quantitative descriptions of the types of Aß assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aß toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AßPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ∼4.5 times that of 21-month-old Tg2576 mice and ∼15 times that of 21-24-month-old rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort.


Assuntos
Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Hipocampo/patologia , Placa Amiloide/patologia , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Benzotiazóis , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos Transgênicos , Placa Amiloide/metabolismo , Especificidade da Espécie , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...