Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(8): 1152-1162, 2023 Aug 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37875355

RESUMO

OBJECTIVES: The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the main signaling pathways related to autophagy. Autophagy plays a key role in the formation of silicosis fibrosis. The phenotypic transformation of lung fibroblasts into myofibroblasts is a hallmark of the transition from the inflammatory phase to the fibrotic phase in silicosis. This study aims to investigate whether the PI3K/Akt/mTOR pathway affects the phenotypic transformation of silicosis-induced lung fibroblasts into myofibroblasts via mediating macrophage autophagy. METHODS: The human monocytic leukemia cell line THP-1 cells were differentiated into macrophages by treating with 100 ng/mL of phorbol ester for 24 h. Macrophages were exposed to different concentrations (0, 25, 50, 100, 200, 400 µg/mL) and different times (0, 6, 12, 24, 48 h) of SiO2 dust suspension. The survival rate of macrophages was measured by cell counting kit-8 (CCK-8) method. Enzyme linked immunosorbent assay (ELISA) was used to measure the contents of transforming growth factor-ß1 (TGF-ß1) and tumor necrosis factor-α (TNF-α) in the cell supernatant. The co-culture system of macrophages and HFL-1 cells was established by transwell. A blank control group, a SiO2 group, a LY294002 group, a SC79 group, a LY294002+SiO2 group, and a SC79+SiO2 group were set up in this experiment. Macrophages in the LY294002+SiO2 group were pretreated with LY294002 (PI3K inhibitor) for 18 hours, and macrophages in the SC79+SiO2 group were pretreated with SC79 (Akt activator) for 24 hours, and then exposed to SiO2 (100 µg/mL) dust suspension for 12 hours. The expression of microtubule-associated protein 1 light chain 3 (LC3) protein in macrophages was detected by the immunofluorescence method. The protein expressions of PI3K, Akt, mTOR, Beclin-1, LC3 in macrophages, and collagen III (Col III), α-smooth muscle actin (α-SMA), fibronectin (FN), matrix metalloproteinase-1 (MMP-1), tissue metalloproteinase inhibitor-1 (TIMP-1) in HFL-1 cells were measured by Western blotting. RESULTS: After the macrophages were exposed to SiO2 dust suspension of different concentrations for 12 h, the survival rates of macrophages were gradually decreased with the increase of SiO2 concentration. Compared with the 0 µg/mL group, the survival rates of macrophages in the 100, 200, and 400 µg/mL groups were significantly decreased, and the concentrations of TGF-ß1 and TNF-α in the cell supernatant were obviously increased (all P<0.05). When 100 µg/mL SiO2 dust suspension was applied to macrophages, the survival rates of macrophages were decreased with the prolonged exposure time. Compared with the 0 h group, the survival rates of macrophages were significantly decreased (all P<0.05), the concentrations of TGF-ß1 and TNF-α in the cell supernatant were significantly increased, and the protein expression levels of Beclin-1 and LC3II were increased markedly in the 6, 12, 24, and 48 h groups (all P<0.05). Immunofluorescence results demonstrated that after exposure to SiO2 (100 µg/mL) dust for 12 h, LC3 exhibited punctate aggregation and significantly higher fluorescence intensity compared to the blank control group (P<0.05). Compared with the blank control group, the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated in the SiO2 group (all P<0.05). Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were down-regulated and the protein expressions of LC3II and Beclin-1 were up-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-ß1 in the cell supernatant were decreased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were down-regulated (all P<0.05) in the LY294002+SiO2 group. Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were up-regulated and the protein expressions of LC3II and Beclin-1 were down-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-ß1 in the cell supernatant were increased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated (all P<0.05) in the SC79+SiO2 group. CONCLUSIONS: Silica dust exposure inhibits the PI3K/Akt/mTOR pathway, increases autophagy and concentration of inflammatory factors in macrophages, and promotes the phenotype transformation of HFL-1 cells into myofibroblasts. The regulation of the PI3K/Akt/mTOR pathway can affect the autophagy induction and the concentration of inflammatory factors of macrophages by silica dust exposure, and then affect the phenotype transformation of HFL-1 cells into myofibroblasts induced by silica dust exposure.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Silicose , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1 , Sirolimo , Proteína Beclina-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Poeira , Serina-Treonina Quinases TOR/metabolismo , Pulmão/metabolismo , Fibroblastos/metabolismo , Silicose/metabolismo , Macrófagos/metabolismo , Autofagia
2.
Toxicol In Vitro ; 92: 105657, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543170

RESUMO

The mechanism of action of MicroRNA-30a(miR-30a) and Snail, a transcription factor, in silica(SiO2) dust-induced pulmonary EMT and secondary pulmonary fibrosis remains elusive. In this study, the cellular EMT model induced by the stimulation of A549 cells with SiO2 was established. A549 cells were transfected with miR-30a mimic and miR-30a inhibitor and the SNAIL gene was silenced to examine the mechanism of miR-30a targeting Snail to regulate silica dust-induced EMT. The results showed that 50 µg/mL SiO2 stained A549 cells for 24 h could induce EMT in A549 cells. Exposure of A549 cells to SiO2 dust decreased miR-30a expression, as well as mRNA and protein expression levels of E-cad. Conversely, SiO2 exposure increased mRNA and protein expression levels of α-SMA, vimentin, and Snail. The miR-30a mimic upregulated mRNA and protein expression levels of E-cadherin in SiO2-induced A549 cells, while downregulating mRNA and protein expression levels of α-SMA, vimentin and Snail. MiR-30a inhibitors have the opposite effect. Silencing the SNAIL gene, followed by SiO2 dust-induced stimulation of A549 cells, could enhance mRNA and protein expression levels of E-cad, whereas those of α-SMA and vimentin were reduced. Altogether, we found that miR-30a directly targeted Snail and inhibited its expression, thereby delaying silica induced pulmonary EMT.


Assuntos
Transição Epitelial-Mesenquimal , MicroRNAs , Dióxido de Silício , Fatores de Transcrição da Família Snail , MicroRNAs/genética , RNA Mensageiro/metabolismo , Dióxido de Silício/toxicidade , Fatores de Transcrição da Família Snail/genética , Vimentina , Humanos , Células A549 , Fibrose Pulmonar
3.
J Appl Toxicol ; 43(9): 1319-1331, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36942470

RESUMO

The role of ASMase/ceramide signaling pathway in the development of silicosis needs to be verified by in vivo experiments. We investigated the role of the ASMase/ceramide signaling pathway in the progression of silicosis and the effect of desipramine (DMI) (1 mg/mL) on the development of silicosis, by establishing a silica (1 mL, 50 mg/mL) dust-contaminated rat silicosis model and administering the ASMase inhibitor, DMI, to the dust-contaminated rats. The results showed that the levels of interleukin (IL)-1ß and IL-6 were increased in the lung tissues of the rats in the dust-contaminated group at the initial stage after dusting; the inflammatory cell aggregation in the lung tissue was increased. With time progression, the hydroxyproline content in the lung tissue increased, and alpha-smooth muscle actin (α-SMA), collagen I, and vimentin substantially increased, suggesting that silicosis was formed in the lung tissue of the rats 28 days after SiO2 dust treatment. Moreover, the levels of ASMase, ceramide, and sphingosine-1-phosphate (S1P) were increased in the lung tissue of rats. The expression of ß-catenin, fibronectin, and caspase-3 protein was increased, and E-cadherin protein expression was decreased in the lung tissue of the rats in the late stage of dust contamination. The ASMase and ceramide in the lung tissues of the rats in the DMI intervention group were reduced, as were the lung tissue inflammation levels, collagen expression, and lung fibrosis. These results suggest that SiO2 dust may activate the ASMase/ceramide signaling pathway in rat lung tissue, promoting pulmonary fibrosis. DMI inhibited this activation, attenuated apoptosis, blocked epithelial-mesenchymal transition, and halted silica dust-induced silicofibrosis.


Assuntos
Fibrose Pulmonar , Silicose , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Ceramidas/toxicidade , Ceramidas/metabolismo , Poeira , Silicose/metabolismo , Pulmão/metabolismo , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...