Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2318443121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412131

RESUMO

Electric currents have the intriguing ability to induce magnetization in nonmagnetic crystals with sufficiently low crystallographic symmetry. Some associated phenomena include the non-linear anomalous Hall effect in polar crystals and the nonreciprocal directional dichroism in chiral crystals when magnetic fields are applied. In this work, we demonstrate that the same underlying physics is also manifested in the electronic tunneling process between the surface of a nonmagnetic chiral material and a magnetized scanning probe. In the paramagnetic but chiral metallic compound Co1/3NbS2, the magnetization induced by the tunneling current is shown to become detectable by its coupling to the magnetization of the tip itself. This results in a contrast across different chiral domains, achieving atomic-scale spatial resolution of structural chirality. To support the proposed mechanism, we used first-principles theory to compute the chirality-dependent current-induced magnetization and Berry curvature in the bulk of the material. Our demonstration of this magnetochiral tunneling effect opens up an avenue for investigating atomic-scale variations in the local crystallographic symmetry and electronic structure across the structural domain boundaries of low-symmetry nonmagnetic crystals.

2.
J Phys Condens Matter ; 36(20)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38290166

RESUMO

Directional non-reciprocity refers to the phenomenon where the motion in one direction differs from the motion in the opposite direction. This behavior is observed across various systems, such as one-way traffic and materials displaying electronic/optical directional dichroism, characterized by the symmetry of velocity vectors. Magnetic toroidal moments (MTMs), which typically arise from rotational spin arrangements, also possess the symmetry of velocity vectors, making them inherently directionally non-reciprocal. In this paper, we examine magnetic point groups (MPGs) that exhibit MTMs, subsequently leading to off-diagonal linear magnetoelectricity. Our focus is on the induction of MTMs through electric fields, magnetic fields, or shear stress, while enumerating the relevant MPGs. The findings of our study will serve as valuable guidance for future investigations on directional non-reciprocity, MTMs, and off-diagonal linear magnetoelectric effects.

3.
J Am Chem Soc ; 145(51): 28022-28029, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38108596

RESUMO

Unlike what happens in conventional ferroics, the ferrorotational (FR) domain manipulation and visualization in FR materials are nontrivial as they are invariant under both space-inversion and time-reversal operations. FR domains have recently been observed by using the linear electrogyration (EG) effect and X-ray diffraction (XRD) diffraction mapping. However, ferrorotational selectivity, such as the selective processing of the FR domains and direct visualization of the FR domains, e.g., under an optical microscope, would be the next step to study the FR domains and their possible applications in technology. Unexpectedly, we discovered that the microscopic FR structural distortions in ilmenite crystals can be directly coupled with macroscopic mechanical rotations in such a way that FR domains can be visualized under an optical microscope after innovative rotational polishing, a combined ion milling with a specific rotational polishing, or a twisting-induced fracturing process. Thus, the FR domains could be a unique medium to register the memory of a rotational mechanical process due to a novel selective coupling between its microscopic structural rotations and an external macroscopic rotation. Analogous to the important enantioselectivity in modern chemistry and the pharmaceutical industry, this newly discovered ferrorotational selectivity opens up opportunities for FR manipulation and new FR functionality-based applications.

4.
Adv Mater ; 35(39): e2303750, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37358066

RESUMO

The manipulation of magnetism through strain control is a captivating area of research with potential applications for low-power devices that do not require dissipative currents. Recent investigations of insulating multiferroics have unveiled tunable relationships among polar lattice distortions, Dzyaloshinskii-Moriya interactions (DMI), and cycloidal spin orders that break inversion symmetry. These findings have raised the possibility of utilizing strain or strain gradient to manipulate intricate magnetic states by changing polarization. However, the effectiveness of manipulating cycloidal spin orders in "metallic" materials with screened magnetism-relevant electric polarization remains uncertain. In this study, the reversible strain control of cycloidal spin textures in a metallic van der Waals magnet, Cr1/3 TaS2 , through the modulation of polarization and DMI induced by strain is demonstrated. With thermally-induced biaxial strains and isothermally-applied uniaxial strains, systematic manipulation of the sign and wavelength of the cycloidal spin textures is realized, respectively. Additionally, unprecedented reflectivity reduction under strain and domain modification at a record-low current density are also discovered. These findings establish a connection between polarization and cycloidal spins in metallic materials and present a new avenue for utilizing the remarkable tunability of cycloidal magnetic textures and optical functionality in van der Waals metals with strain.

5.
Rep Prog Phys ; 85(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36198263

RESUMO

The symmetry of the whole experimental setups, including specific sample environments and measurables, can be compared with that of specimens for observable physical phenomena. We, first, focus on one-dimensional (1D) experimental setups, independent from any spatial rotation around one direction, and show that eight kinds of 1D objects (four; vector-like, the other four; director-like), defined in terms of symmetry, and their dot and cross products are an effective way for the symmetry consideration. The dot products form a Z2× Z2× Z2group with Abelian additive operation, and the cross products form a Z2× Z2group with Abelian additive operation or Q8, a non-Abelian group of order eight, depending on their signs. Those 1D objects are associated with characteristic physical phenomena. When a 3D specimen has symmetry operational similarity (SOS) with (identical or lower, but not higher, symmetries than) an 1D object with a particular phenomenon, the 3D specimen can exhibit the phenomenon. This SOS approach can be a transformative and unconventional avenue for symmetry-guided materials designs and discoveries.

6.
Adv Mater ; 34(44): e2206022, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36059043

RESUMO

Layered Li2 SrNb2 O7 , an inorganic oxide in its bulk single-crystalline form, is experimentally demonstrated to exhibit multiple structural facets such as ferroelasticity, ferroelectricity, and antiferroelectricity. The transition from a room temperature (RT) centrosymmetric structure to a low-temperature out-of-plane ferroelectric and in-plane antiferroelectric structure and the low-temperature (LT) ferroelectric domain configuration are unveiled in TEM, piezoresponse force microscopy, and polarization loop studies. Li2 SrNb2 O7  also exhibits highly tunable ferroelasticity and excellent Li+ in-plane conduction, which leads to a giant in-plane memristor behavior and an in-plane electronic conductivity increase by three orders of magnitude by electric poling at room RT). The accumulation of Li+ vacancies at the crystal-electrode interface is visualized using in situ optical microscopy. The Li-ionic biased state shows a clear in-plane rectification effect combined with a significant relaxation upon time at RT. Relaxation can be fully suppressed at LTs such as 200 K, and utilizing an electric field cooling, a stable rectification can be achieved at 200 K. The results shed light on the selective control of multifunctionalities such as ferroelasticity, ferroelectricity, and ionic-migration-mediated effects (a memristor effect and rectification) in a single-phase bulk material utilizing, for example, different directions, temperatures, frequencies, and magnitudes of electric field.

7.
Proc Natl Acad Sci U S A ; 118(40)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593631

RESUMO

Chiral magnets have recently emerged as hosts for topological spin textures and related transport phenomena, which can find use in next-generation spintronic devices. The coupling between structural chirality and noncollinear magnetism is crucial for the stabilization of complex spin structures such as magnetic skyrmions. Most studies have been focused on the physical properties in homochiral states favored by crystal growth and the absence of long-ranged interactions between domains of opposite chirality. Therefore, effects of the high density of chiral domains and domain boundaries on magnetic states have been rarely explored so far. Herein, we report layered heterochiral Cr1/3TaS2, exhibiting numerous chiral domains forming topological defects and a nanometer-scale helimagnetic order interlocked with the structural chirality. Tuning the chiral domain density, we discovered a macroscopic topological magnetic texture inside each chiral domain that has an appearance of a spiral magnetic superstructure composed of quasiperiodic Néel domain walls. The spirality of this object can have either sign and is decoupled from the structural chirality. In weak, in-plane magnetic fields, it transforms into a nonspiral array of concentric ring domains. Numerical simulations suggest that this magnetic superstructure is stabilized by strains in the heterochiral state favoring noncollinear spins. Our results unveil topological structure/spin couplings in a wide range of different length scales and highly tunable spin textures in heterochiral magnets.

8.
Nat Commun ; 12(1): 5339, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504085

RESUMO

Ferrotoroidal order, which represents a spontaneous arrangement of toroidal moments, has recently been found in a few linear magnetoelectric materials. However, tuning toroidal moments in these materials is challenging. Here, we report switching between ferritoroidal and ferrotoroidal phases by a small magnetic field, in a chiral triangular-lattice magnet BaCoSiO4 with tri-spin vortices. Upon applying a magnetic field, we observe multi-stair metamagnetic transitions, characterized by equidistant steps in the net magnetic and toroidal moments. This highly unusual ferri-ferroic order appears to come as a result of an unusual hierarchy of frustrated isotropic exchange couplings revealed by first principle calculations, and the antisymmetric exchange interactions driven by the structural chirality. In contrast to the previously known toroidal materials identified via a linear magnetoelectric effect, BaCoSiO4 is a qualitatively new multiferroic with an unusual coupling between several different orders, and opens up new avenues for realizing easily tunable toroidal orders.

9.
Nat Mater ; 20(6): 826-832, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33495629

RESUMO

HfO2, a simple binary oxide, exhibits ultra-scalable ferroelectricity integrable into silicon technology. This material has a polymorphic nature, with the polar orthorhombic (Pbc21) form in ultrathin films regarded as the plausible cause of ferroelectricity but thought not to be attainable in bulk crystals. Here, using a state-of-the-art laser-diode-heated floating zone technique, we report the Pbc21 phase and ferroelectricity in bulk single-crystalline HfO2:Y as well as the presence of the antipolar Pbca phase at different Y concentrations. Neutron diffraction and atomic imaging demonstrate (anti)polar crystallographic signatures and abundant 90°/180° ferroelectric domains in addition to switchable polarization with negligible wake-up effects. Density-functional-theory calculations indicate that the yttrium doping and rapid cooling are the key factors for stabilization of the desired phase in bulk. Our observations provide insights into the polymorphic nature and phase control of HfO2, remove the upper size limit for ferroelectricity and suggest directions towards next-generation ferroelectric devices.

10.
Phys Rev Lett ; 125(25): 257603, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416369

RESUMO

Hafnia (HfO_{2})-based thin films have promising applications in nanoscale electronic devices due to their robust ferroelectricity and integration with silicon. Identifying and stabilizing the ferroelectric phases of HfO_{2} have attracted intensive research interest in recent years. In this work, first-principles calculations on (111)-oriented HfO_{2} are used to discover that imposing an in-plane shear strain on the metastable tetragonal phase drives it to a polar phase. This in-plane-shear-induced polar phase is shown to be an epitaxial-strain-induced distortion of a previously proposed metastable ferroelectric Pnm2_{1} phase of HfO_{2}. This ferroelectric Pnm2_{1} phase can account for the recently observed ferroelectricity in (111)-oriented HfO_{2}-based thin films on a SrTiO_{3} (STO) (001) substrate [Nat. Mater. 17, 1095 (2018)NMAACR1476-112210.1038/s41563-018-0196-0]. Further investigation of this alternative ferroelectric phase of HfO_{2} could potentially improve the performances of HfO_{2}-based films in logic and memory devices.

11.
Nat Commun ; 10(1): 4211, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527602

RESUMO

Much of the dramatic growth in research on topological materials has focused on topologically protected surface states. While the domain walls of topological materials such as Weyl semimetals with broken inversion or time-reversal symmetry can provide a hunting ground for exploring topological interfacial states, such investigations have received little attention to date. Here, utilizing in-situ cryogenic transmission electron microscopy combined with first-principles calculations, we discover intriguing domain-wall structures in MoTe2, both between polar variants of the low-temperature(T) Weyl phase, and between this and the high-T higher-order topological phase. We demonstrate how polar domain walls can be manipulated with electron beams and show that phase domain walls tend to form superlattice-like structures along the c axis. Scanning tunneling microscopy indicates a possible signature of a conducting hinge state at phase domain walls. Our results open avenues for investigating topological interfacial states and unveiling multifunctional aspects of domain walls in topological materials.

12.
Adv Mater ; 29(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27797143

RESUMO

Sr3 Sn2 O7 is the first room-temperature ferroelectric Sn insulator with switchable electric polarization. The ferroelastic twin domains are observed using a polarized optical microscope. The polarization hysteresis loop clearly demonstrates the ferroelectric property. Intriguing polarization switching kinetics are observed through an in situ poling process using a dark-field transmission electron microscopy technique.

13.
J Am Chem Soc ; 138(17): 5479-82, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-26927232

RESUMO

The layered perovskite Ca3-xSrxMn2O7 is shown to exhibit a switching from a material exhibiting uniaxial negative to positive thermal expansion as a function of x. The switching is shown to be related to two closely competing phases with different symmetries. The negative thermal expansion (NTE) effect is maximized when the solid solution is tuned closest to this region of phase space but is switched off suddenly on passing though the transition. Our results show for the first time that, by understanding the symmetry of the competing phases alone, one may achieve unprecedented chemical control of this unusual property.

14.
Nat Mater ; 14(4): 407-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25581628

RESUMO

On the basis of successful first-principles predictions of new functional ferroelectric materials, a number of new ferroelectrics have been experimentally discovered. Using trilinear coupling of two types of octahedron rotation, hybrid improper ferroelectricity has been theoretically predicted in ordered perovskites and the Ruddlesden-Popper compounds (Ca3Ti2O7, Ca3Mn2O7 and (Ca/Sr/Ba)3(Sn/Zr/Ge)2O7). However, the ferroelectricity of these compounds has never been experimentally confirmed and even their polar nature has been under debate. Here we provide the first experimental demonstration of room-temperature switchable polarization in bulk crystals of Ca3Ti2O7, as well as Sr-doped Ca3Ti2O7. Furthermore, (Ca, Sr)3Ti2O7 is found to exhibit an intriguing ferroelectric domain structure resulting from orthorhombic twins and (switchable) planar polarization. The planar domain structure accompanies abundant charged domain walls with conducting head-to-head and insulating tail-to-tail configurations, which exhibit a conduction difference of two orders of magnitude. These discoveries provide new research opportunities, not only for new stable ferroelectrics of Ruddlesden-Popper compounds, but also for meandering conducting domain walls formed by planar polarization.

15.
Microscopy (Oxf) ; 63 Suppl 1: i22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25359818

RESUMO

Multiferroic hexagonal manganite RMnO3 (R = rare-earth elements) shows improper ferroelectricity accompanied by tilting of MnO5 hexahedra as the primary order parameter. The ferroelectricity is originated from displacements of rare-earth ions along c-axis triggered by the MnO5 hexahedra tilting. Although coupling between ferroelectric and antiferromagnetic domains below the magnetic transition temperature of ∼90 K has been reported from previous work[1], the relationship between the ferroelectric domains and structural domains due to the MnO5 hexahedra tilting has not been well-studied. In this talk, we will report our studies on unique patterns of ferroelectric antiphase domains with a vorticity in hexagonal RMnO3, obtained from the results of transmission electron microscopy [2].The electron diffraction patterns obtained at room temperature exhibit superlattice reflection spots due to the MnO5 hexahedra tilting and displacements of rare-earth ions along c-axis, in addition to the fundamental reflections associated with the high symmetry structure with the space group of P63/mmc. Unique antiphase/ferroelectric "cloverleaf-like" domain patterns are clearly observed in dark-field images taken using superlattice spots. The fundamental and superlattice dark-field imaging combined with high-resolution imaging clearly demonstrates that in the cloverleaf-like domain patterns the antiphase and ferroelectric domains arrange periodically with certain rotation direction. In addition, there exist two types of cloverleaf-like domain patterns with the opposite rotations next to each other in the superlattice dark-field images. These results indicate that the cloverleaf-like domain patterns can be considered as the aggregation of vortices and antivortices consisting of ferroelectric and antiphase domains.

16.
Langmuir ; 30(34): 10430-9, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25105822

RESUMO

This study investigates the effect of Fe(3+) on the electronic structure of nanocrystalline ceria. Systematic synchrotron X-ray absorption spectroscopy coupled with scanning transmission electron microscopy/electron energy loss spectroscopy was utilized. The oxygen vacancies can be engineered and their number varied with the degree of iron doping. Comparing the local electronic structure around Ce sites with that around Fe sites reveals two stages of defect engineering. The concentration of Ce(3+) and the distribution of defects differ between lower and higher degrees of doping. Charge is transferred between Ce and Fe when the doping level is less than 5%, but this effect is not significant at a doping level of over 5%. This transfer of charge is verified by energy loss spectroscopy. These Fe-modified ceria nanoparticles exhibit core-shell-like structures at low doping levels and this finding is consistent with the results of scanning transmission electron microscopy/electron energy loss spectroscopy. More Fe is distributed at the surface for doping levels less than 5%, whereas the homogeneity of Fe in the system increases for doping levels higher than 5%. X-ray magnetic circular dichroism spectroscopy reveals that Ce, rather than Fe, is responsible for the ferromagnetism. Interestingly, Ce(3+) is not essential for producing the ferromagnetism. The oxygen vacancies and the defect structure are suggested to be the main causes of the ferromagnetism. The charge transfer and defect structure Fe(3+)-Vo-Ce(3+) and Fe(3+)-Vo-Fe(3+) are critical for the magnetism, and the change in saturated magnetization can be understood as being caused by the competition between interactions that originate from magnetic polarons and from paired ions.

17.
J Am Chem Soc ; 136(23): 8368-73, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24841114

RESUMO

Common mathematical theories can have profound applications in understanding real materials. The intrinsic connection between aperiodic orders observed in the Fibonacci sequence, Penrose tiling, and quasicrystals is a well-known example. Another example is the self-similarity in fractals and dendrites. From transmission electron microscopy experiments, we found that FexTaS2 crystals with x = 1/4 and 1/3 exhibit complicated antiphase and chiral domain structures related to ordering of intercalated Fe ions with 2a × 2a and √3a × âˆš3a superstructures, respectively. These complex domain patterns are found to be deeply related with the four color theorem, stating that four colors are sufficient to identify the countries on a planar map with proper coloring and its variations for two-step proper coloring. Furthermore, the domain topology is closely relevant to their magnetic properties. Our discovery unveils the importance of understanding the global topology of domain configurations in functional materials.

18.
Phys Rev Lett ; 113(26): 267602, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615384

RESUMO

We show that the spontaneous symmetry breaking in multiferroic hexagonal manganites can be chemically manipulated to yield two complementary ground states: the well-known ferroelectric P6(3)cm and an antipolar P3c phase. Both symmetry breakings yield topologically protected vortex defects, with the antipolar vortices dual to those of the ferroelectric. This duality stems from the existence of 12 possible angles of MnO5 tilting, and broad strain-free walls with low energy spontaneously emerge through an intermediate P3c1 state, providing a complete unified symmetry description.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...