Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 847
Filtrar
1.
Eur J Pharmacol ; : 176759, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901527

RESUMO

Excessive or inappropriate fear responses can lead to anxiety-related disorders, such as post-traumatic stress disorder (PTSD). Studies have shown that microglial activation occurs after fear conditioning and that microglial inhibition impacts fear memory. However, the role of microglia in fear memory recall remains unclear. In this study, we investigated the activated profiles of microglia after the recall of remote-cued fear memory and the role of activated microglia in the extinction of remote-cued fear in adult male C57BL/6 mice. The results revealed that the expression of the microglia marker Iba1 increased in the medial prefrontal cortex (mPFC) at 10 min and 1 h following remote-cued fear recall, which was accompanied by amoeboid morphology. Inhibiting microglial activation through PLX3397 treatment before remote fear recall did not affect recall, reconsolidation, or regular extinction but facilitated recall-extinction and mitigated spontaneous recovery. Moreover, our results demonstrated reduced co-expression of Iba1 and postsynaptic density protein 95 (PSD95) in the mPFC, along with decreases in the p-PI3K/PI3K ratio, p-Akt/Akt ratio, and KLF4 expression after PLX3397 treatment. Our results suggest that microglial activation after remote fear recall impedes fear extinction through the pruning of synapses in the mPFC, accompanied by alterations in the expression of the PI3K/AKT/KLF4 pathway. This finding can help elucidate the mechanism involved in remote fear extinction, contributing to the theoretical foundation for the intervention and treatment of PTSD.

2.
Chemosphere ; 361: 142329, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763396

RESUMO

Carbon source is a key factor determining the denitrifying effectiveness and efficiency in wastewater treatment plants (WWTPs). Whereas, the relationships between diverse and distinct denitrifying communities and their favorable carbon sources in full-scale WWTPs were not well-understood. This study performed a systematic analysis of the relationships between the denitrifying community and carbon sources by using 15 organic compounds from four categories and activated sludge from 8 full-scale WWTPs. Results showed that, diverse denitrifying bacteria were detected with distinct relative abundances in 8 WWTPs, such as Haliangium (1.98-4.08%), Dechloromonas (2.00-3.01%), Thauera (0.16-1.06%), Zoogloea (0.09-0.43%), and Rhodoferax (0.002-0.104%). Overall, acetate resulted in the highest denitrifying activities (1.21-4.62 mg/L/h/gMLSS), followed by other organic acids (propionate, butyrate and lactate, etc.). Detectable dissimilatory nitrate reduction to ammonium (DNRA) was observed for all 15 carbon sources. Methanol and glycerol resulted in the highest DRNA. Acetate, butyrate, and lactate resulted in the lowest DNRA. Redundancy analysis and 16S cDNA amplicon sequencing suggested that carbon sources within the same category tended to correlate to similar denitrifiers. Methanol and ethanol were primarily correlated to Haliangium. Glycerol and amino acids (glutamate and aspartate) were correlated to Inhella and Sphaerotilus. Acetate, propionate, and butyrate were positively correlated to a wide range of denitrifiers, explaining the high efficiency of these carbon sources. Additionally, even within the same genus, different amplicon sequence variants (ASVs) performed distinctly in terms of carbon source preference and denitrifying capabilities. These findings are expected to benefit carbon source formulation and selection in WWTPs.


Assuntos
Carbono , Desnitrificação , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Águas Residuárias/microbiologia , Carbono/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Esgotos/microbiologia , Nitratos/metabolismo , Nitratos/análise , Compostos de Amônio/metabolismo
3.
Inorg Chem ; 63(22): 10366-10372, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38772004

RESUMO

The accurate manipulation of the species and locations of catalytic centers is crucial for regulating the catalytic activity of catalysts, which is essential for their efficient design and development. Metal-organic frameworks (MOFs) with coordinated metal sites are ideal materials for investigating the origin of catalytic activity. In this study, we present a Ni2-MOF featuring novel Ni-based binuclear nodes with open metal sites (OMSs) and saturated metal sites (SMSs). The nickel was replaced by iron to obtain Ni1Fe1-MOF. In the electrocatalytic oxygen evolution reaction, Ni1Fe1-MOF exhibited an overpotential and Tafel slope of 370 mV@10 mA cm-2 and 87.06 mV dec-1, respectively, which were higher than those of Ni2-MOF (283 mV@10 mA cm-2 and 39.59 mV dec-1, respectively), demonstrating the superior performance of Ni1Fe1-MOF. Furthermore, theoretical calculations revealed that iron as an SMS may effectively regulate the electronic structure of the nickel catalytic center to reduce the free energy barrier ΔG*OH of the rate-determining step.

4.
Biomedicines ; 12(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790988

RESUMO

Cancer patients face increased susceptibility to invasive infections, primarily due to ulcerative lesions on mucosal surfaces and immune suppression resulting from chemotherapy. Pseudomonas aeruginosa (P. aeruginosa) bacteremia is notorious for its rapid progression into fatal sepsis, posing a significant threat to cancer patients, particularly those experiencing chemotherapy-induced neutropenia. This bacterial infection contributes significantly to morbidity and mortality rates among such individuals. Our latest report showed the mutually beneficial effects of postbiotic butyrate on 1,25-dihydroxyvitamin D3 (1,25D3)-controlled innate immunity during Salmonella colitis. Hence, we investigated the impact of butyrate and 1,25D3 on chemotherapy-induced gut-derived P. aeruginosa sepsis in mice. The chemotherapy-induced gut-derived P. aeruginosa sepsis model was established through oral administration of 1 × 107 CFU of the P. aeruginosa wild-type strain PAO1 in C57BL/6 mice undergoing chemotherapy. Throughout the infection process, mice were orally administered butyrate and/or 1,25D3. Our observations revealed that the combined action of butyrate and 1,25D3 led to a reduction in the severity of colitis and the invasion of P. aeruginosa into the liver and spleen of the mice. This reduction was attributed to an enhancement in the expression of defensive cytokines and antimicrobial peptides within the cecum, coupled with decreased levels of zonulin and claudin-2 proteins in the mucosal lining. These effects were notably more pronounced when compared to treatments administered individually. This study unveils a promising alternative therapy that involves combining postbiotics and 1,25D3 for treating chemotherapy-induced gut-derived P. aeruginosa sepsis.

5.
Heliyon ; 10(9): e29896, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707273

RESUMO

In this study, ionic liquids (ILs) were used as organic modifiers by introducing montmorillonite nanolayers containing potential C and N active sites between the montmorillonite nanolayers. Organically modified montmorillonite (ILs-Mt-p) was further prepared by high-temperature pyrolysis under N2 and used for the removal of ofloxacin (OFL) by activated peroxymonosulfate (PMS). Combined with XPS and other characterization analyses, it was found that the catalyst materials prepared from different organic modifiers had similar surface functional groups and graphitized structures, but contained differences in the types and numbers of C and N active sites. The catalyst (3CPC-Mt-p) obtained after pyrolysis of montmorillonite modified with cetylpyridinium chloride (CPC) had optimal catalytic performance, in which graphitic C, graphitic N, and carbonyl group (C[bond, double bond]O) could synergistically promote the activation of PMS by electron transfer, and 77.3 % of OFL could be removed within 60 min. The effects of OFL concentration, initial pH, and anions on the effects of OFL removal by the 3CPC-Mt-p/PMS system were further investigated. Satisfactory degradation results were obtained over a wide pH range. Cl- promoted the system to degrade OFL, while the presence of SO42-, H2PO4- and HA showed some inhibition, but overall the 3CPC-Mt-p catalysts had a strong anti-interference ability, showing good application prospects. The quenching experiments and EPR tests showed that O2-- and 1O2 in the 3CPC-Mt-p/PMS system were the main reactive oxygen species for the degradation of OFL, and •OH was also involved in the reaction. This study provides ideas for the construction and modulation of active sites in mineral materials such as montmorillonite and broadens the application of montmorillonite composite catalysts in advanced oxidation processes for the treatment of antibiotic wastewater.

6.
ACS Appl Mater Interfaces ; 16(15): 18658-18670, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587811

RESUMO

Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.


Assuntos
Osteogênese , Alicerces Teciduais , Camundongos , Animais , Coelhos , Alicerces Teciduais/química , Biomimética , Regeneração Óssea , Poliésteres/química , Engenharia Tecidual , Impressão Tridimensional
7.
World J Gastroenterol ; 30(10): 1377-1392, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596500

RESUMO

BACKGROUND: Crohn's disease (CD) is often misdiagnosed as intestinal tuberculosis (ITB). However, the treatment and prognosis of these two diseases are dramatically different. Therefore, it is important to develop a method to identify CD and ITB with high accuracy, specificity, and speed. AIM: To develop a method to identify CD and ITB with high accuracy, specificity, and speed. METHODS: A total of 72 paraffin wax-embedded tissue sections were pathologically and clinically diagnosed as CD or ITB. Paraffin wax-embedded tissue sections were attached to a metal coating and measured using attenuated total reflectance fourier transform infrared spectroscopy at mid-infrared wavelengths combined with XGBoost for differential diagnosis. RESULTS: The results showed that the paraffin wax-embedded specimens of CD and ITB were significantly different in their spectral signals at 1074 cm-1 and 1234 cm-1 bands, and the differential diagnosis model based on spectral characteristics combined with machine learning showed accuracy, specificity, and sensitivity of 91.84%, 92.59%, and 90.90%, respectively, for the differential diagnosis of CD and ITB. CONCLUSION: Information on the mid-infrared region can reveal the different histological components of CD and ITB at the molecular level, and spectral analysis combined with machine learning to establish a diagnostic model is expected to become a new method for the differential diagnosis of CD and ITB.


Assuntos
Doença de Crohn , Enterite , Tuberculose Gastrointestinal , Humanos , Doença de Crohn/diagnóstico , Doença de Crohn/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Diagnóstico Diferencial , Parafina , Tuberculose Gastrointestinal/diagnóstico , Tuberculose Gastrointestinal/patologia , Enterite/diagnóstico , Aprendizado de Máquina , Proteínas Mutadas de Ataxia Telangiectasia
8.
Food Chem ; 449: 139243, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608605

RESUMO

Linusorbs (LO), cyclolinopeptides, are a group of cyclic hydrophobic peptides and considered a valuable by-product of flaxseed oil due to numerous health benefits. Currently applied acetone or methanol extraction could contaminate the feedstocks for further food-grade application. Using flaxseed cake as feedstock, this study established a practical method for preparing LO from pressed cake. Firstly, LO composition of 15 flaxseed cultivars was analyzed. Next, cold-pressed cake was milled and screened mechanically. The kernel and hull fractions were separated based on the disparity of their mechanical strength. Monitored by hyperspectral fluorescence, the LO-enriched kernel fraction separated from cold-pressed flaxseed cake was further used as feedstock for LO production. After ethanol extraction, partition, and precipitation, LOs were extracted from cold-pressed flaxseed cake with a purity of 91.4%. The proposed method could serve as feasible flaxseed cake valorization strategy and enable the preparation of other polar compounds such as flax lignan and mucilage.


Assuntos
Linho , Peptídeos Cíclicos , Sementes , Linho/química , Sementes/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/análise , Manipulação de Alimentos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
9.
Behav Brain Res ; 465: 114960, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38494129

RESUMO

Cognitive behavioral therapy, rooted in exposure therapy, is currently the primary approach employed in the treatment of anxiety-related conditions, including post-traumatic stress disorder (PTSD). In laboratory settings, fear extinction in animals is a commonly employed technique to investigate exposure therapy; however, the precise mechanisms underlying fear extinction remain elusive. Casein kinase 2 (CK2), which regulates neuroplasticity via phosphorylation of its substrates, has a significant influence in various neurological disorders, such as Alzheimer's disease and Parkinson's disease, as well as in the process of learning and memory. In this study, we adopted a classical Pavlovian fear conditioning model to investigate the involvement of CK2 in remote fear memory extinction and its underlying mechanisms. The results indicated that the activity of CK2 in the medial prefrontal cortex (mPFC) of mice was significantly upregulated after extinction training of remote cued fear memory. Notably, administration of the CK2 inhibitor CX-4945 prior to extinction training facilitated the extinction of remote fear memory. In addition, CX-4945 significantly upregulated the expression of p-ERK1/2 and p-CREB in the mPFC. Our results suggest that CK2 negatively regulates remote fear memory extinction, at least in part, by inhibiting the ERK-CREB pathway. These findings contribute to our understanding of the underlying mechanisms of remote cued fear extinction, thereby offering a theoretical foundation and identifying potential targets for the intervention and treatment of PTSD.


Assuntos
Medo , Transtornos de Estresse Pós-Traumáticos , Animais , Camundongos , Caseína Quinase II/metabolismo , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo
10.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299379

RESUMO

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Assuntos
Quitina , Flores , Hypocreales , Oryza , Doenças das Plantas , Oryza/microbiologia , Oryza/metabolismo , Oryza/genética , Doenças das Plantas/microbiologia , Quitina/metabolismo , Flores/microbiologia , Hypocreales/patogenicidade , Hypocreales/genética , Hypocreales/metabolismo , Transdução de Sinais , Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulência , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
11.
Biomedicines ; 12(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397855

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is a leading cause of nosocomial infections associated with a high mortality rate and represents a serious threat to human health and the increasing frequency of antimicrobial resistance. Cancer patients are more vulnerable to invasive infection due to ulcerative lesions in mucosal surfaces and immune suppression secondary to chemotherapy. In our in vitro study, we observed that probiotics have the potential to yield beneficial effects on intestinal epithelial cells infected with P. aeruginosa. Additionally, probiotics were found to confer advantageous effects on the innate immunity of mice suffering from Salmonella-induced colitis. As a result, we sought to investigate the impact of probiotics on gut-derived P. aeruginosa sepsis induced by chemotherapy. Following chemotherapy, gut-derived P. aeruginosa sepsis was induced in female C57BL/6 mice aged 6-8 weeks, which were raised under specific-pathogen-free (SPF) conditions in an animal center. Prior to the induction of the sepsis model, the mice were administered 1 × 108 colony-forming units (CFU) of the probiotics, namely Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) via oral gavage. We observed that LGG or BL amplified the inflammatory mRNA expression in mice undergoing chemotherapy and suffering from gut-derived P. aeruginosa sepsis. This led to a heightened severity of colitis, as indicated by histological examination. Meanwhile, there was a notable decrease in the expression of antimicrobial peptide mRNA along with reduced levels of zonulin and claudin-2 protein staining within mucosal tissue. These alterations facilitated the translocation of bacteria to the liver, spleen, and bloodstream. To our astonishment, the introduction of probiotics exacerbated gut-derived P. aeruginosa sepsis in mice undergoing chemotherapy. Conclusively, we must be prudent when using probiotics in mice receiving chemotherapy complicated with gut-derived P. aeruginosa sepsis.

12.
Environ Int ; 185: 108532, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422876

RESUMO

Nanoplastics (NPs) continue to accumulate in global aquatic and terrestrial systems, posing a potential threat to human health through the food chain and/or other pathways. Both in vivo and in vitro studies have confirmed that the liver is one of the main organs targeted for the accumulation of NPs in living organisms. However, whether exposure to NPs induces size-dependent disorders of liver lipid metabolism remains controversial, and the reversibility of NPs-induced hepatotoxicity is largely unknown. In this study, the effects of long-term exposure to environmentally relevant doses of polystyrene nanoplastics (PS-NPs) on lipid accumulation were investigated in terms of autophagy and lysosomal mechanisms. The findings indicated that hepatic lipid accumulation was more pronounced in mice exposed to 100 nm PS-NPs compared to 500 nm PS-NPs. This effect was effectively alleviated after 50 days of self-recovery for 100 nm and 500 nm PS-NPs exposure. Mechanistically, although PS-NPs exposure activated autophagosome formation through ERK (mitogen-activated protein kinase 1)/mTOR (mechanistic target of rapamycin kinase) signaling pathway, the inhibition of Rab7 (RAB7, member RAS oncogene family), CTSB (cathepsin B), and CTSD (cathepsin D) expression impaired lysosomal function, thereby blocking autophagic flux and contributing to hepatic lipid accumulation. After termination of PS-NPs exposure, lysosomal exocytosis was responsible for the clearance of PS-NPs accumulated in lysosomes. Furthermore, impaired lysosomal function and autophagic flux inhibition were effectively alleviated. This might be the main reason for the alleviation of PS-NPs-induced lipid accumulation after recovery. Collectively, we demonstrate for the first time that lysosomes play a dual role in the persistence and reversibility of hepatotoxicity induced by environmental relevant doses of NPs, which provide novel evidence for the prevention and intervention of liver injury associated with nanoplastics exposure.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Microplásticos , Poliestirenos/toxicidade , Lisossomos , Lipídeos
13.
Mycobiology ; 52(1): 58-67, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415174

RESUMO

The present study sought to propose Ganoderma guixiense sp. nov. as a new species based on phenotypic and genotypic evidence. Phylogenetic analyses were carried out based on the internal transcribed spacer (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), and the second subunit of RNA polymerase II (RPB2) sequence data. G. guixiense has been characterized by pileate basidiomata, long stipe, in addition to reddish-black zonate pileal surface. Basidiospores are broadly ellipsoid with one end tapering at maturity, and measuring 9-12.8 × 6.5-9.3 µm. Basidia are oval to subglobose. This study marks the first exploration of the biological characteristics of G. guixiense. The result indicated that the optimal medium of mycelial growth was observed on malt extract agar (MEA) and yeast extract peptone dextrose agar (YPD) while the optimal temperature was found to be 25-30 °C with pH range of 6-7.

14.
Dalton Trans ; 53(9): 4204-4213, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38323916

RESUMO

Marbofloxacin (MB) is a newly developed fluoroquinolone antibiotic used especially as a veterinary drug. It may be regarded as the improved version of enrofloxacin owing to its antibacterial activity, enhanced bioavailability, and pharmacokinetic-pharmacodynamic (PK-PD) properties. In this study, nine heavy rare-earth ions (Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were selected in light of their potential antibacterial activity and satisfactory biosafety to afford the corresponding rare-earth metal complexes of MB: the MB-Ln series. Their chemical structures and coordination patterns were characterized using IR spectroscopy, HRMS, TGA, and X-ray single-crystal diffraction analysis. Our results confirmed that all the MB-Ln complexes yielded the coincident coordination modes with four MB ligands coordinating to the Ln(III) center. In vitro antibacterial screening on five typical bacteria strains revealed that the MB-Ln complexes exhibited antibacterial activities comparable with MB, as indicated by the MIC/MBC values, in which Escherichia coli and Salmonella typhi were the most sensitive ones to MB-Ln. Furthermore, the MB-Ln complexes were found to be much less toxic in vivo than MB, as suggested by the evaluated LD50 (50% lethal dose) values. All the MB-Ln series complexes fell in the LD50 range of 5000-15 000 mg kg-1, while the LD50 value of MB was only 1294 mg kg-1. Furthermore, MB-Lu, as the selected representative of MB-Ln, could effectively inhibit the activity of DNA gyrase, the same as MB, suggesting the primary antibacterial mechanism of the MB-Ln series. The results demonstrated the good prospects and potential of metal-based veterinary drugs with better drug performance.


Assuntos
Metais Terras Raras , Drogas Veterinárias , Estrutura Molecular , Metais Terras Raras/farmacologia , Metais Terras Raras/química , Fluoroquinolonas/farmacologia , Antibacterianos/farmacologia , Íons/química
15.
Sci Rep ; 14(1): 237, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167897

RESUMO

This study aimed to examine the role played by the physical literacy and mindfulness in the health-related quality of life (QoL) of college students. In early 2022, 24,236 college students from three universities in southern China were recruited in the study. R software and the lavvan package was utilized to build the structural equation model. The measurement model was composed of three latent factors (physical literacy, mindfulness, and quality of life) and 16 observed variables in total. The results of the measurement model indicated goodness fit with p > .05 in Chi-square result, and GFI = .92. In addition, the comparative fit index (.92), Tucker-Lewis index (.91), root-mean-square error of approximation (.07), and root of mean square residual (.11) were in accord with the cutoff model-fit criteria. The results confirm that physical literacy and mindfulness can play a significant and positive role in the structural equation model of quality of life. In addition, this study provides initial evidence that mindfulness and physical literacy could potentially buffer declines in student QoL during the COVID-19 pandemic. Moreover, this study is the first to develop a structural equation model of QoL with multiple indicators, making it a strong addition to existing research on QoL during a pandemic.


Assuntos
COVID-19 , Atenção Plena , Humanos , Qualidade de Vida , Pandemias , Alfabetização , Inquéritos e Questionários , COVID-19/epidemiologia , Estudantes
16.
Huan Jing Ke Xue ; 45(1): 576-583, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216506

RESUMO

Urban wetland parks are an important practice for urban wetland protection and utilization due to the vast ecosystem service value. As emerging contaminants, antibiotic resistance genes (ARGs) are great attractions for environmental research and public concerns. Based on high-throughput qPCR and high-throughput amplicon sequencing techniques, we investigated the occurrence, abundance, and distribution profiles of antibiotic resistance genes in the aquatic environment of Xiamen urban wetland parks (five sites). The influencing factors and driving mechanisms of antibiotic resistance genes were deciphered on the basis of microbial community structure and water quality. Diverse and abundant ARGs were observed and coexisted in urban wet parks. A total of 217 ARGs were detected in the water body of urban wetland parks, with an abundance up to 6.48×109 copies·L-1. Urban wetland parks were important hotspots and repositories of the antibiotic resistome. A total of nine bacterial genera, including Marivivens, NS5_marine_group, and Planktomarina, were identified as the potential carriers of diverse resistance genes (41 ARGs). The microbial communities could alone explain 51% of alterations in the antibiotic resistome in the aquatic environment of the urban wetland parks. Therefore, the microbial community was the key driving force for the occurrence and evolution of ARGs in urban wetland parks. Based on the results, with the presence of ARGs and antibiotic resistance bacteria, it is suggested that the water environments of urban wetland parks have potential risks of water ecological security and human health, and it is necessary to further enhance the research and control of microbial contaminants in the aquatic environment of urban wetland parks.


Assuntos
Genes Bacterianos , Microbiota , Humanos , Genes Bacterianos/genética , Áreas Alagadas , Antibacterianos/análise , Resistência Microbiana a Medicamentos/genética , Bactérias/genética
17.
Sci Total Environ ; 918: 170273, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280590

RESUMO

The increased use of disinfection since the pandemic has led to increased effective chlorine concentration in municipal wastewater. Whereas, the specific impacts of active chlorine on nitrogen and phosphorus removal, the mediating communities, and the related metabolic activities in wastewater treatment plants (WWTPs) lack systematic investigation. We systematically analyzed the influences of chlorine disinfection on nitrogen and phosphorus removal activities using activated sludge from five full-scale WWTPs. Results showed that at an active chlorine concentration of 1.0 mg/g-SS, the nitrogen and phosphorus removal systems were not significantly affected. Major effects were observed at 5.0 mg/g-SS, where the nitrogen and phosphorus removal efficiency decreased by 38.9 % and 44.1 %, respectively. At an active chlorine concentration of 10.0 mg/g-SS, the nitrification, denitrification, phosphorus release and uptake activities decreased by 15.1 %, 69.5-95.9 %, 49.6 % and 100 %, respectively. The proportion of dead cells increased by 6.1 folds. Reverse transcriptional quantitative polymerase chain reaction (RT-qPCR) analysis showed remarkable inhibitions on transcriptions of the nitrite oxidoreductase gene (nxrB), the nitrite reductase genes (nirS and nirK), and the nitrite reductase genes (narG). The nitrogen and phosphorus removal activities completely disappeared with an active chlorine concentration of 25.0 mg/g-SS. Results also showed distinct sensitivities of different functional bacteria in the activated sludge. Even different species within the same functional group differ in their susceptibility. This study provides a reference for the understanding of the threshold active chlorine concentration values which may potentially affect biological nitrogen and phosphorus removal in full-scale WWTPs, which are expected to be beneficial for decision-making in WWTPs to counteract the potential impacts of increased active chlorine concentrations in the influent wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Esgotos/microbiologia , Cloro , Nitrogênio/metabolismo , Fósforo/metabolismo , Desinfecção , Nitrificação , Nitrito Redutases/metabolismo , Desnitrificação , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
18.
J Pediatr Surg ; 59(4): 660-666, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38171956

RESUMO

OBJECTIVE: To elucidate the safety and effectiveness of laryngeal mask airway (LMA) use in pediatric patients undergoing laparoscopic inguinal hernia repair. METHODS: Studies were searched on the PubMed, EMBASE, and Cochrane Library databases. Only randomized controlled trials (RCTs) were included. Primary outcomes were major perioperative respiratory adverse events (PRAEs), namely laryngospasm, bronchospasm, desaturation, and aspiration. Secondary outcomes were minor PRAEs, anesthesia time, and recovery time. A meta-analysis was performed to calculate risk ratios (RR), weighted mean difference (WMD), and 95 % confidence intervals (CI) by using random effects models. RESULTS: In total, 5 RCTs comprising 402 patients were included. Regarding major PRAEs, laryngospasm (RR: 0.43, 95 % CI: 0.12 to 1.47; p = 0.18), bronchospasm, and aspiration all demonstrated no difference between the laryngeal and endotracheal groups. Desaturation exhibited a trend, but this trend was not sufficiently supported with statistical evidence (p = 0.09). For minor PRAEs, fewer patients experienced incidence of cough after laryngeal mask use (RR: 0.27, 95 % CI: 0.11 to 0.67; p = 0.005). Other PRAE, namely hoarseness (p = 0.06), sore throat (RR: 1.88, 95 % CI: 0.76 to 4.66; p = 0.18), and stridor, did not differ between the 2 groups. Additionally, both anesthesia time (WMD: -6.88 min, 95 % CI: -11.88 to -1.89; p < 0.00001) and recovery time (WMD: -4.85 min, 95 % CI: -6.51 to -3.19; p < 0.00001) were shortened in the LMA group. CONCLUSION: LMA used in pediatric laparoscopic inguinal hernia repair demonstrated no greater safety risks than endotracheal tube intubation did. Thus, anesthesiologists may shift from conventional endotracheal tube use to LMA use. Moreover, anesthesia and recovery times were shortened in the LMA group, which resulted in more efficient use of the operating room. Because of these benefits, LMA could be an appropriate option for pediatric patients undergoing laparoscopic inguinal hernia repair. LEVEL OF EVIDENCE: Treatment Study, LEVEL III.


Assuntos
Espasmo Brônquico , Hérnia Inguinal , Laparoscopia , Máscaras Laríngeas , Laringismo , Transtornos Respiratórios , Criança , Humanos , Máscaras Laríngeas/efeitos adversos , Laringismo/epidemiologia , Laringismo/etiologia , Espasmo Brônquico/complicações , Hérnia Inguinal/complicações , Intubação Intratraqueal/efeitos adversos , Transtornos Respiratórios/etiologia , Laparoscopia/efeitos adversos
19.
J Hazard Mater ; 465: 133392, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38171204

RESUMO

Antibiotic resistance is an escalating global concern, leading to millions of annual deaths worldwide. Human activities can impact antibiotic resistance gene (ARG) prevalence in aquatic ecosystems, but the intricate interplay between anthropogenic disturbances and river system resilience, and their respective contributions to the dynamics of different river segments, remains poorly understood. In this study, we investigate the antibiotic resistome and microbiome in water and sediment samples from two distinct sub-watersheds within a specific watershed. Results show a decrease in the number of core ARGs downstream in water, while sediments near densely populated areas exhibit an increase. PCoA ordination reveals clear geographic clustering of resistome and microbiome among samples from strong anthropogenic disturbed areas, reservoir areas, and estuary area. Co-occurrence networks highlight a higher connectivity of mobile genetic elements (MGEs) in disturbed areas compared to reservoir areas, presenting a threat to densely populated areas. Water quality parameters and antibiotics concentration were the key factors shaping the ARG profiles in sediment samples from urban regions. Overall, our study reveals distinct patterns of ARGs in sediment and water samples, emphasizing the importance of considering both anthropogenic and natural factors in comprehending and managing ARG distribution in river systems.


Assuntos
Genes Bacterianos , Microbiota , Humanos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Rios
20.
Microbiol Spectr ; 12(1): e0268323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095463

RESUMO

IMPORTANCE: At the National Cheng Kung University Hospital, numerous cases of amoebic keratitis had been identified with concurrent bacterial infections. Among these bacterial coinfections, Pseudomonas aeruginosa accounted for 50% of the reported cases. However, the impact of pathogenic bacteria on amoeba-induced corneal damage remains unclear. In our study, we successfully demonstrated that P. aeruginosa accumulated on the Acanthamoeba castellanii surface and caused more severe corneal damage. We also indicated that the exposure of P. aeruginosa to amoeba-soluble antigens enhanced its adhesion ability, promoted biofilm formation, and led to more severe corneal cell damage. These findings significantly contributed to our understanding of the risk associated with P. aeruginosa coinfection in the progression of amoeba keratitis.


Assuntos
Coinfecção , Lesões da Córnea , Ceratite , Humanos , Pseudomonas aeruginosa , Coinfecção/patologia , Córnea , Ceratite/patologia , Lesões da Córnea/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...